Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microbial communities occurring in reference materials for artificial barriers (e.g., bentonites) in future deep geological repositories of radioactive waste can influence the migration behavior of radionuclides such as curium (Cm). This study investigates the molecular interactions between Cm and its inactive analogue europium (Eu) with the indigenous bentonite bacterium at environmentally relevant concentrations. Potentiometric studies showed a remarkably high concentration of phosphates at the bacterial cell wall compared to other bacteria, revealing the great potential of for metal binding. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the role of phosphates and carboxylate groups from the cell envelope in the bioassociation of Eu. Additionally, time-resolved laser-induced fluorescence spectroscopy (TRLFS) identified phosphoryl and carboxyl groups from bacterial envelopes, among other released complexing agents, to be involved in the Eu and Cm coordination. The ability of this bacterium to form a biofilm at the surface of bentonites allows them to immobilize trivalent lanthanide and actinides in the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c02418DOI Listing

Publication Analysis

Top Keywords

radioactive waste
8
molecular binding
4
binding eu/cm
4
eu/cm impact
4
impact safety
4
safety future
4
future geodisposal
4
geodisposal radioactive
4
waste microbial
4
microbial communities
4

Similar Publications

Chemical alteration of UO micro-particles in model lung systems.

J Hazard Mater

August 2025

Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:

Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.

View Article and Find Full Text PDF

The huge volume waste of the produced water (PW) associated with petroleum extraction poses significant hazards to the surrounded environment due to its complex composition and the presence of various hazardous pollutants, including organic, inorganic, biological contaminants, and natural occurring radioactive materials (NORM). This study was conducted to investigate the factors affecting the removal of the long-lived radium isotopes, i.e.

View Article and Find Full Text PDF

Tightly bound tritium (TBT) in soil is poorly studied in terms of its bioavailability. This paper presents the results of long-term studies (2018 through 2023) on the bioavailability of tightly bound tritium in soil. Field studies were conducted in the epicentral zones of the Semipalatinsk test site (STS), using dominant and subdominant species.

View Article and Find Full Text PDF

Sr(Ⅱ) and Cs(Ⅰ) adsorbed by graphene synthesized from spent lithium-ion batteries anode materials via novelly electrochemical exfoliation.

J Environ Radioact

September 2025

Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China. Electronic address:

The discharge of nuclear wastewater into the sea may pose a significant environmental and health risk due to radionuclides such as Cs and Sr. Consequently, the efficient removal of these nuclides has emerged as a focal point in the field of radioactive wastewater treatment. Traditional restoration methods, which rely on physical and chemical interventions as well as bioremediation, are economically burdensome and unsuitable for large-scale restoration efforts.

View Article and Find Full Text PDF

Microplastic pollution in the Yangtze River: Characterization, influencing factors, and scenario-based predictions using machine learning method.

J Hazard Mater

September 2025

Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China. Electronic address:

Microplastic (MP) pollution in the Yangtze River has emerged as a major environmental concern, because MPs are frequently detected and pose serious threats to ecosystems. Understanding the characteristics of MPs is essential for assessing their environmental behavior and associated risks. This paper investigated the current status of MP pollution in the Yangtze River, including the abundance, shape, polymer type, and color.

View Article and Find Full Text PDF