Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacteria, especially antibiotic-resistant bacteria, in water threaten public health in countries. Simultaneous flocculation, sterilization and identification of bacteria are great challenge in water treatment. Herein we presented a three-in-one compound through combining a novel Bacitracin-based flocculant (B-g-PAMDAC) and surface enhanced Raman scattering (SERS) labels, the modified Au@AgNPs using graphene oxide (GO) and 4-mercaptophenylboronic acid (4-MPBA). B-g-PAMDAC with bactericidal groups and microblock structure was synthesized via copolymerization and self-assembly. Its functional groups and microblock structure contributed to the excellent performance in flocculation of bacteria. 4-MPBA as bacterial capture bound to the bacterial cell membrane and contributed to recognition of bacteria in flocculation. Bacteria aggregating around Au@AgNPs resulted in abundant "hot spots" and strong Raman signals. SERS labels obviously improved the sensitivity, accuracy and stability of bacteria identification even at low bacterial concentration of 1 × 10 CFU mL. They presented distinct fingerprints of bacteria, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus and Enterococcus faecalis, in Raman mappings. Bacitracin improved sterilization efficiency of B-g-PAMDAC in four bacteria treatment in terms of sterilization rate and time. β-galactosidase and respiratory activity of bacteria revealed sterilization mechanism of B-g-PAMDAC that changed permeability of cell membrane before it reduced the respiration activity of bacteria and ruptured cell wall.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124389DOI Listing

Publication Analysis

Top Keywords

bacteria
12
bacitracin-based flocculant
8
surface enhanced
8
enhanced raman
8
raman scattering
8
bacteria water
8
water treatment
8
sers labels
8
groups microblock
8
microblock structure
8

Similar Publications

Purpose Of Review: Diagnostic stewardship (DS) aims to optimise the use of laboratory testing to improve patient care while reducing unnecessary tests. This review examines recent evidence on DS interventions to optimise the use of resources, focusing on three key areas: reducing unnecessary testing, maximising the impact of existing tests, and avoiding the overdiagnosis of hospital-acquired infections.

Recent Findings: Multiple interventions have demonstrated effectiveness in reducing unnecessary blood and urine culture testing, including clinical decision support tools, education programs, and multidisciplinary approaches.

View Article and Find Full Text PDF

Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).

Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.

View Article and Find Full Text PDF

Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.

Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.

View Article and Find Full Text PDF

Timely and accurate assessment of wounds during the healing process is crucial for proper diagnosis and treatment. Conventional wound dressings lack both real-time monitoring capabilities and active therapeutic functionalities, limiting their effectiveness in dynamic wound environments. Herein, we report our proof-of-concept approach exploring the unique emission properties and antimicrobial activities of carbon nanodots (CNDs) for simultaneous detection and treatment of bacteria.

View Article and Find Full Text PDF

Background And Aims: Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), remain heterogeneous disorders with variable response to biologics. Post-operative recurrence in CD is common despite surgery and prophylactic biotherapies. Understanding the inflammatory mediators associated with recurrence and treatment response could pave the way for personalized strategies.

View Article and Find Full Text PDF