Effects of Low-Intensity Pulsed Ultrasound on Myelosuppression of Rats Induced by Chemotherapy Drugs With Cell Cycle Specificity.

J Ultrasound Med

State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To explore the ameliorating effects of low-intensity pulsed ultrasound (LIPUS) on Sprague Dawley rat myelosuppression induced by cell cycle specificity drugs (docetaxel, mitotic phase sensitive; and etoposide, gap 2 phase sensitive).

Methods: Rats were respectively administered docetaxel (100 mg/kg) or etoposide (110 mg/kg) by intraperitoneal injection for 4 consecutive days. Then the rats were divided randomly into a LIPUS group and a non-LIPUS group. In the LIPUS group, the right femoral metaphysis of rats was treated by LIPUS (acoustic intensity, 200 mW/cm ; frequency, 0.3 MHz; and duty cycle, 20%) for 20 minutes on 7 consecutive days from day 5. The rats of the non-LIPUS group were treated without ultrasound output. A blood cell count, an enzyme-linked immunosorbent assay, a real-time quantitative polymerase chain reaction, and hematoxylin-eosin staining were applied to detect the results.

Results: Low-intensity pulsed ultrasound significantly promoted the counts of bone marrow nucleated cells, white blood cells, immunoglobulin A (IgA), IgG, granulocyte colony-stimulating factor, stem cell factor, and intercellular cell adhesion molecule 1 and reduced the counts of vascular cell adhesion molecule 1 whether in the docetaxel or etoposide group (P < .05). Low-intensity pulsed ultrasound only increased the expression level of IgM in the docetaxel group but decreased the level of interleukin 6 in the etoposide group (P < .05).

Conclusions: Low-intensity pulsed ultrasound has potential to be a noninvasive treatment for myelosuppression caused by different cell cycle-sensitive chemotherapy drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jum.15562DOI Listing

Publication Analysis

Top Keywords

low-intensity pulsed
12
pulsed ultrasound
12
effects low-intensity
8
cell cycle
8
cycle specificity
8
consecutive days
8
lipus group
8
non-lipus group
8
cell adhesion
8
adhesion molecule
8

Similar Publications

This study evaluated the modification of corn starch using low-intensity pulsed electric field (PEF: 10 kV) combined with sodium salts (NaCl, NaCO₃, NaH₂PO₄) to investigate how pH and increased electrical conductivity affect starch structure. The study examined how salt pH and increased conductivity from electronegativity differences enhance polymer structural changes. NaCO₃ reduced amylose and long amylopectin chains (DP ≥ 37) by 18 %, confirmed by hydrodynamic radius (Rh) reductions for amylose (3.

View Article and Find Full Text PDF

Background: Exercise intensity is commonly determined using maximal heart rate and maximal oxygen uptake. However, blood lactate levels at different exercise intensities are considered more sensitive biomarkers of endurance performance than maximal oxygen uptake. This study evaluated the validity of exercise intensity determined by blood lactate levels during running and determine the dynamics of blood glucose and β-hydroxybutyrate levels during high- and low-intensity running exercise.

View Article and Find Full Text PDF

In recent years, academia has sought the therapeutic applicability of periodic low-intensity electromagnetic field exposure (< 1 h/d) for biomedical applications. We have designed and developed a monoaxial Helmholtz coil chamber for non-invasive magnetic field exposure for therapeutic application, i.e.

View Article and Find Full Text PDF

Low-Intensity pulsed ultrasound enhances paracrine secretion of IGF and VEGF by bmscs, promoting osteogenesis and angiogenesis.

BMC Musculoskelet Disord

September 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.

Background: Low-intensity pulsed ultrasound (LIPUS) is an effective therapy for craniofacial bone regeneration. Paracrine signaling from mesenchymal stem cells (MSCs) plays a critical role in bone repair, but the impact of LIPUS on MSC-derived secretome remains unclear. This study investigates whether LIPUS enhances the osteogenic and angiogenic potential of MSCs through modulation of growth factor secretion.

View Article and Find Full Text PDF

Heart failure (HF) is not a disease but a combination of signs and symptoms caused by the failure of the heart to pump blood to support the circulatory system at rest or during activity. HF is the potential end stage of all heart diseases in which cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the protein and pathways affected. Cardiomyopathies represent major causes of morbidity and mortality at all ages in humans in which hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), are the most common.

View Article and Find Full Text PDF