Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Circulating tumor cells (CTCs) acquire mesenchymal markers (e.g., N-cadherin) and lose epithelial markers (e.g., epithelial cell adhesion molecule, EpCAM) during the epithelial-mesenchymal transition (EMT) and are therefore ideal biomarkers of tumor metastasis. However, it is still a challenge to efficiently capture and detect circulating tumor cells with different phenotypes simultaneously. In this work, to obtain aptamers targeting N-cadherin in the native conformation on live cells, we established stable N-cadherin overexpressing cells (N-cadherin cells) and used these cells to identify a panel of N-cadherin-specific aptamers through the cell-SELEX approach. Two aptamer candidates obtained after 12 rounds of selection showed a low equilibrium dissociation constant in the nanomolar range, indicating high binding affinity. The truncated aptamer candidate NC3S showed the highest binding affinity to N-cadherin cells with a low Kd value of 20.08 nM. The SYL3C aptamer was reported to target cancer cell surface biomarker EpCAM. Then, we synthesized two kinds of aptamer-modified magnetic nanoparticles (SYL3C-MNPs and NC3S-MNPs). Both SYL3C and NC3S aptamers possess excellent capture specificity and efficiency for the target cells. The aptamer-MNP cocktail exhibits a considerable capture efficiency and sensitivity for rare cancer cells of epithelial and mesenchymal phenotypes. Furthermore, no CTCs were found in blood samples from healthy donors, while CTCs were successfully isolated by using the aptamer-MNP cocktail for 15 out of 16 samples collected from patients. In summary, the two kinds of aptamer-modified MNPs could be utilized as a promising tool for capturing CTCs from clinical samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr06180hDOI Listing

Publication Analysis

Top Keywords

circulating tumor
12
tumor cells
12
cells
10
aptamers targeting
8
targeting n-cadherin
8
n-cadherin cells
8
binding affinity
8
kinds aptamer-modified
8
aptamer-mnp cocktail
8
n-cadherin
6

Similar Publications

Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.

View Article and Find Full Text PDF

PEGylated dendrimers for precision cancer therapy: Advances in tumor targeting, drug delivery, and clinical translation.

Biomater Adv

September 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.

View Article and Find Full Text PDF

Amino Acid Metabolism in Cancer Cachexia and Chemotherapy Myotoxicity.

Am J Physiol Cell Physiol

September 2025

Division of Medical Sciences, NOSM University, Ontario, Canada.

Cancer induced skeletal muscle wasting (cachexia) is responsible for over 20% of cancer related deaths, yet much about the pathophysiology of the condition remains unknown. Importantly, cancer cachexia does not seem wholly responsive to traditional anabolic stimuli such as nutritional interventions. It is possible that tumours directly or indirectly target skeletal muscle for their dynamic and abundant pool of amino acids that can be reliably used by tumours to supplement energy production and biomass synthesis.

View Article and Find Full Text PDF

Nonsmall cell lung cancer (NSCLC) with SMARCA4 deficiency represents a rare subset of lung tumors characterized by early metastasis, poor response to chemotherapy, and unfavorable prognosis. Established therapy strategies for SMARCA4-deficient NSCLC remain elusive. While immune checkpoint inhibitors have been proposed as a potential solution, their efficacy remains uncertain.

View Article and Find Full Text PDF