Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The gut microbiota has been implicated in the therapeutic effects of antidiabetics. It is unclear if antidiabetics directly influences gut microbiome-host interaction. Oral peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, such as rosiglitazone, are potent insulin sensitizers used in the treatment of type 2 diabetes (T2D). PPAR-γ is abundantly expressed in the intestine, making it possible that PPAR-γ agonists directly influences gut microbiome-host homeostasis. The presented study therefore aimed to characterize local gut microbiome and intestinal transcriptome responses in diabetic db/db mice following rosiglitazone treatment. Diabetic B6.BKS(D)-Lepr/J (db/db) mice (8 weeks of age) received oral dosing once daily with vehicle (n = 12) or rosiglitazone (3 mg/kg, n = 12) for 8 weeks. Gut segments (duodenum, jejunum, ileum, caecum, and colon) were sampled for paired analysis of gut microbiota and host transcriptome signatures using full-length bacterial 16S rRNA sequencing and RNA sequencing (n = 5-6 per group). Treatment with rosiglitazone improved glucose homeostasis without influencing local gut microbiome composition in db/db mice. In contrast, rosiglitazone promoted marked changes in ileal and colonic gene expression signatures associated with peroxisomal and mitochondrial lipid metabolism, carbohydrate utilization and immune regulation. In conclusion, rosiglitazone treatment markedly affected transcriptional markers of intestinal lipid metabolism and immune regulation but had no effect on the gut microbiome in diabetic db/db mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.110966DOI Listing

Publication Analysis

Top Keywords

db/db mice
20
gut microbiome
16
local gut
12
rosiglitazone treatment
12
diabetic db/db
12
gut
9
microbiome intestinal
8
intestinal transcriptome
8
transcriptome responses
8
treatment diabetic
8

Similar Publications

Bioinspired Provisional Matrix Stimulates Regenerative Healing of Diabetic Wounds.

Wound Repair Regen

September 2025

Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, Ohio, USA.

This study tested the hypothesis that diabetic wound treatment with biomimetic pro-angiogenic, proteolytically and mechanically stable RADA16-II peptide nanofibers promotes regenerative wound healing via attenuation of inflammation and stimulation of neovascularization. Two full-thickness excisional dorsal skin wounds were created on 8-10 week old female db/db mice and treated with nanofiber hydrogel or saline (control). Animals were euthanized on days 7, 14, 28, and 56 and their wounds were analysed for morphology, vascularization, strength, and inflammation.

View Article and Find Full Text PDF

Triptolide improves microbial dysbiosis and metabolite disorder in db/db mice.

Ren Fail

December 2025

Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Nanjing University of Chinese Medicine, Shenzhen, China.

Background: Diabetic kidney disease (DKD) is an increasing global public health problem. Triptolide (TP) has a good therapeutic effect on DKD and is widely used in China. However, the mechanism of TP is still unclear.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a multifactorial disease in which inflammation and angiogenesis play a crucial role. SerpinE2, or protease nexin-1 (PN-1), is a protease inhibitor of the serpin family, expressed by vascular and inflammatory cells. In this study, we addressed the role of SerpinE2 in DN, using the models of streptozotocin-induced type-1 and db/db type-2 diabetes.

View Article and Find Full Text PDF

Background Type 2 diabetes (T2D) is a complex metabolic disorder characterized by impaired glucose regulation and insulin resistance and frequently accompanied by obesity and dyslipidemia. The search for novel therapeutic agents to manage these metabolic parameters remains ongoing. Pepper fruit (cv.

View Article and Find Full Text PDF

Metabolic syndrome (MetS)-related diseases, such as type 2 diabetes (T2D) and obesity, are among the leading causes of liver damage, and their prevalence poses an increasing clinical challenge. The Mediterranean diet (MD) has shown promising effects in managing MetS, reducing mortality and morbidity. However, the precise biochemical and molecular mechanisms underlying the MD efficacy remain unclear.

View Article and Find Full Text PDF