98%
921
2 minutes
20
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652827 | PMC |
http://dx.doi.org/10.1038/s41467-020-18996-3 | DOI Listing |
Arch Insect Biochem Physiol
September 2025
Department of Plant Medicals, Andong National University, Andong, Republic of Korea.
The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100
The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Azadirachtin, a highly effective botanical pesticide, demonstrated notable biological activities against Spodoptera frugiperda, including mortality induction, growth and development inhibition, and antifeedant effects. Neuropeptide F (NPF) has been shown to play a role in various physiological processes in insects. Nonetheless, the functions of Sf-NPF1 in regulating food intake and antifeedant induction by azadirachtin in S.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, China. Electronic address:
The 20S proteasome is a core component of the ubiquitin-proteasome system, participating in various biological processes such as cell cycle regulation, signal transduction, apoptosis, and protein homeostasis. However, its roles in mammals are well-documented, its function in the insect intestine remains largely unexplored. In this study, we identified 14 20S proteasome subunits, including 7 α-subunits and 7 β-subunits in Locusta migratoria, a worldwide agricultural pest.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
Certain parasites manipulate host behavior following infection to enhance their own dispersal and transmission. Lepidopteran larvae infected with baculoviruses exhibit increased locomotion, ascending to the apex of their host plant where they ultimately die in a characteristic inverted, liquefied posture suspended by their prolegs-a phenomenon termed "tree-top disease". Although numerous studies have investigated the underlying causes of this behavior, the precise mechanism governing tree-top disease formation remains unresolved.
View Article and Find Full Text PDF