98%
921
2 minutes
20
The application of genomic profiling assays using plasma circulating tumor DNA (ctDNA) is rapidly evolving in the management of patients with advanced solid tumors. Diverse plasma ctDNA technologies in both commercial and academic laboratories are in routine or emerging use. The increasing integration of such testing to inform treatment decision making by oncology clinicians has complexities and challenges but holds significant potential to substantially improve patient outcomes. In this review, the authors discuss the current role of plasma ctDNA assays in oncology care and provide an overview of ongoing research that may inform real-world clinical applications in the near future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3322/caac.21650 | DOI Listing |
Nature
September 2025
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.
View Article and Find Full Text PDFBiomater Adv
September 2025
Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.
View Article and Find Full Text PDFAm J Respir Crit Care Med
September 2025
Hôpital Avicenne, Medical-Surgical Intensive Care Unit, Bobigny, Île-de-France, France;
Am J Physiol Cell Physiol
September 2025
Division of Medical Sciences, NOSM University, Ontario, Canada.
Cancer induced skeletal muscle wasting (cachexia) is responsible for over 20% of cancer related deaths, yet much about the pathophysiology of the condition remains unknown. Importantly, cancer cachexia does not seem wholly responsive to traditional anabolic stimuli such as nutritional interventions. It is possible that tumours directly or indirectly target skeletal muscle for their dynamic and abundant pool of amino acids that can be reliably used by tumours to supplement energy production and biomass synthesis.
View Article and Find Full Text PDFAnticancer Drugs
September 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College.
Nonsmall cell lung cancer (NSCLC) with SMARCA4 deficiency represents a rare subset of lung tumors characterized by early metastasis, poor response to chemotherapy, and unfavorable prognosis. Established therapy strategies for SMARCA4-deficient NSCLC remain elusive. While immune checkpoint inhibitors have been proposed as a potential solution, their efficacy remains uncertain.
View Article and Find Full Text PDF