98%
921
2 minutes
20
Objective: In this paper, we propose to evaluate the use of pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke facial video frames. Using pre-trained CNNs as a feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally expensive. The features are extracted after fully connected layers (FCL's), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet.
Results: From around 2-h Fluke video recording of seven neonates, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future work a dedicated neural network trained on neonatal data or a transfer learning approach is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641846 | PMC |
http://dx.doi.org/10.1186/s13104-020-05343-4 | DOI Listing |
Neural Netw
September 2025
College of Information Science, North China University of Technology, Beijing, China. Electronic address:
Personalized Federated Learning (pFL) has received extensive attentions, due to its ability to effectively process non-IID data distributed among different clients. However, most of the existing pFL methods focus on the collaboration between global and local models to enrich the personalization process, but ignoring a lot of valuable historical information, which represents the unique learning trajectory of each client. In this paper, we propose a pFL method called FedLFH, which introduces a tracking variable that allows each client to preserve historical information to facilitate personalization.
View Article and Find Full Text PDFJ Food Sci
September 2025
Faculty of Computing, Federal University of Uberlandia, Uberlândia, Brazil.
The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process.
View Article and Find Full Text PDFNeural Netw
September 2025
School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.
View Article and Find Full Text PDFJ Xray Sci Technol
September 2025
Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China.
Parkinson's disease (PD) is a challenging neurodegenerative condition often prone to diagnostic errors, where early and accurate diagnosis is critical for effective clinical management. However, existing diagnostic methods often fail to fully exploit multimodal data or systematically incorporate expert domain knowledge. To address these limitations, we propose MKD-Net, a multimodal and knowledge-driven diagnostic framework that integrates imaging and non-imaging clinical data with structured expert insights to enhance diagnostic performance.
View Article and Find Full Text PDFZookeys
August 2025
Department of Cell Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland Adam Mickiewicz University in Poznan Poznań Poland.
The Greek island of Corfu (Kérkyra) is considered the type locality of two species described in 1834 by Rossmässler, namely and . In this work, Corfu populations of these species were investigated by an integrative approach including analysis of morphological features of shell and distal genitalia as well as molecular features of selected mitochondrial and nuclear gene fragments to establish the relationships between Corfu and as well as between Corfu and Italian . Shell features did not differentiate the pairs analysed, i.
View Article and Find Full Text PDF