98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584236 | PMC |
http://dx.doi.org/10.18632/oncotarget.27768 | DOI Listing |
Neurol Res
September 2025
Henan Provincial People's Hospital, Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Zhengzhou, China.
Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.
Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.
Nucleic Acids Res
September 2025
Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India.
Embryonic stem cells (ESCs), which are susceptible to DNA damage, depend on a robust and highly efficient DNA damage response (DDR) mechanism for their survival. However, the implications of physical force-mediated DNA damage on ESC fate remain unclear. We show that stiffness-dependent spreading of mouse ESCs (mESCs) induces DNA damage through nuclear compression, with DNA damage causing differentiation through Lamin A/C.
View Article and Find Full Text PDFBackground: The goal was to explore the impact of the NR1D1 gene on the occurrence, development, and prognosis of colorectal cancer (CRC) using bioinformatics approaches.
Methods: CRC transcriptomic and clinical data from TCGA were analyzed to compare NR1D1 expression in tumors and various clinical stages. Survival differences between high and low NR1D1 expression groups were assessed using the R survival package.
Cancer Pathog Ther
September 2025
Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
Collagen contributes to extracellular matrix formation and stiffness, providing a three-dimensional framework that supports the development and growth of solid tumors. By interacting with specific tumor cell receptors, collagen influences tumor cell signaling pathways, promoting cancer progression and drug resistance. Recent advancements in understanding the tumor extracellular matrix have underscored collagen's role in fostering an immunosuppressive tumor microenvironment (TME) and acting as a barrier to immunotherapy.
View Article and Find Full Text PDFImmunotherapy
September 2025
Gustave Roussy Cancer Campus, Villejuif, France.