98%
921
2 minutes
20
The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (ΔssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the ΔssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the ΔssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665748 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3000934 | DOI Listing |
Biologics
September 2025
Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Beijing, People's Republic of China.
Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.
View Article and Find Full Text PDFNoncoding RNA Res
December 2025
Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
Purpose: To verify the stability and reliability of circulating microRNA (miRNA) profiles in plasma and serum under different processing and storage conditions to inform future applications to circulating biomarker analyses.
Background: The development of blood-based methods for early disease detection has become increasingly desirable across various medical fields. RNA profiles have been investigated but have been a challenge due to rapid degradation of the analyte by ubiquitous RNases.
Cell Signal
September 2025
Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Respiratory Immunology research center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer mortality. 2.48 million new cases were reported globally in 2022, driven by rising adenocarcinoma rates linked to environmental factors such as air pollution.
View Article and Find Full Text PDFCisplatin resistance significantly limits the efficacy of chemotherapy in non-small cell lung cancer, necessitating the development of new strategies to overcome this barrier. This in vitro study aimed to elucidate the mechanism by which β-Ele reverses cisplatin resistance in lung adenocarcinoma cells via the LINC00511-mediated glycolysis and Wnt/β-catenin signaling pathways. The cisplatin-resistant human lung adenocarcinoma cell line (A549/DDP), with either LINC00511 overexpression or knockdown, was established through plasmid transfection.
View Article and Find Full Text PDFmSphere
September 2025
Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA.
Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.
View Article and Find Full Text PDF