Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep learning is rapidly becoming the technique of choice for automated segmentation of nuclei in biological image analysis workflows. In order to evaluate the feasibility of training nuclear segmentation models on small, custom annotated image datasets that have been augmented, we have designed a computational pipeline to systematically compare different nuclear segmentation model architectures and model training strategies. Using this approach, we demonstrate that transfer learning and tuning of training parameters, such as the composition, size, and preprocessing of the training image dataset, can lead to robust nuclear segmentation models, which match, and often exceed, the performance of existing, off-the-shelf deep learning models pretrained on large image datasets. We envision a practical scenario where deep learning nuclear segmentation models trained in this way can be shared across a laboratory, facility, or institution, and continuously improved by training them on progressively larger and varied image datasets. Our work provides computational tools and a practical framework for deep learning-based biological image segmentation using small annotated image datasets. Published [2020]. This article is a U.S. Government work and is in the public domain in the USA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8914348PMC
http://dx.doi.org/10.1002/cyto.a.24257DOI Listing

Publication Analysis

Top Keywords

deep learning
16
nuclear segmentation
16
image datasets
16
segmentation models
12
biological image
8
annotated image
8
segmentation
7
image
7
deep
5
training
5

Similar Publications

Multi-region ultrasound-based deep learning for post-neoadjuvant therapy axillary decision support in breast cancer.

EBioMedicine

September 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF