Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A promising approach to influence and control the photophysical properties of conjugated polymers is directing their molecular conformation by templating. We explore here the templating effect of single-stranded DNA oligomers (ssDNAs) on cationic polythiophenes with the goal to uncover the intermolecular interactions that direct the polymer backbone conformation. We have comprehensively characterized the optical behavior and structure of the polythiophenes in conformationally distinct complexes depending on the sequence of nucleic bases and addressed the effect on the ultrafast excited-state relaxation. This, in combination with molecular dynamics simulations, allowed us a detailed atomistic-level understanding of the structure-property correlations. We find that electrostatic and other noncovalent interactions direct the assembly with the polymer, and we identify that optimal templating is achieved with (ideally 10-20) consecutive cytosine bases through numerous π-stacking interactions with the thiophene rings and side groups of the polymer, leading to a rigid assembly with ssDNA, with highly ordered chains and unique optical signatures. Our insights are an important step forward in an effective approach to structural templating and optoelectronic control of conjugated polymers and organic materials in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587141PMC
http://dx.doi.org/10.1021/acs.chemmater.0c02251DOI Listing

Publication Analysis

Top Keywords

single-stranded dna
8
conjugated polymers
8
interactions direct
8
templating
5
structural photophysical
4
photophysical templating
4
templating conjugated
4
conjugated polyelectrolytes
4
polyelectrolytes single-stranded
4
dna promising
4

Similar Publications

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

The Influence of Single-Stranded or Double-Stranded DNA Tags on Ligand Binding Affinity in DNA-Encoded Libraries.

Anal Chem

September 2025

Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.

DNA-encoded libraries have become widely used in drug discovery, and several different setups to link chemical compounds to DNA have been employed in the field, including single-stranded and double-stranded DNA tags as well as a variety of linker chemistries. In our previous study, we observed distinct differences in binding affinities between ligands coupled either to single-stranded or double-stranded DNA; however, the molecular basis for these differences remained unclear. Here, we present a native ion mobility mass spectrometry approach that incorporates gas- and solution-phase activation techniques to systematically investigate these differences, specifically the impact of DNA tags on binding performance in protein-ligand interactions.

View Article and Find Full Text PDF

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF

STN1 Shields CTC1 From TRIM32-Mediated Ubiquitination to Prevent Cellular Aging.

Aging Cell

September 2025

Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

The CST (CTC1-STN1-TEN1) complex, a single-stranded DNA (ssDNA) binding complex, is essential for telomere maintenance and genome stability. Depletion of either CTC1 or STN1 results in cellular senescence, while mutations in these components are associated with severe hereditary disorders. In this study, we demonstrate that the direct STN1-CTC1 interaction stabilizes CTC1 by preventing its degradation via TRIM32 mediated ubiquitination.

View Article and Find Full Text PDF

Transmembrane signaling is essential for cellular communication, yet reconstituting such mechanisms in synthetic systems remains challenging. Here, we report a simple and robust DNA-based mechanism for transmembrane signaling in synthetic cells using cholesterol-modified single-stranded DNA (Chol-ssDNA). We discovered that anchored Chol-ssDNA spontaneously flips across the membrane of giant unilamellar lipid vesicles (GUVs) in a nucleation-driven, defect-mediated process.

View Article and Find Full Text PDF