Publications by authors named "Sebastien Clement"

Continuous human population growth, industrialization, and technical progress have increased the demand for a new design and synthesis of chemical compounds. Developing eco-friendly chemical compounds has been a priority for fostering a sustainable and healthy environment, which is directly linked to human well-being. In this context, green chemistry and circular economy principles have been applied to generate valuable new chemicals, such as surfactants, with high market value.

View Article and Find Full Text PDF

The engineering of conjugated oligo- and polymers at the micro- and nanoscale is crucial for developing advanced functional materials and electronic devices, such as organic field-effect transistors, organic light-emitting diodes, and sensors, due to their electronic and optoelectronic properties being highly dependent on their supramolecular order. This research investigates the self-assembly and aggregation behavior of a series of amphiphilic oligothiophenes with varying hydrophilic/hydrophobic balances synthesized through palladium-catalyzed cross-coupling reactions. The molecular structures were characterized by using NMR spectroscopy and mass spectrometry.

View Article and Find Full Text PDF

We report the synthesis of a functional molecule, a quatertiophene-based surfactant, which can both adsorb at the water/gas interface (surface active molecule) and aggregate through π-π stacking interactions. We assess then the ability of this molecule to create these functionalities at interfaces. This interfacial functional aggregation, characterized here for the first time, is probed thanks to Langmuir trough experiments and spectrometric ellipsometry.

View Article and Find Full Text PDF

Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.

View Article and Find Full Text PDF

Electrochemical oxidation of Zn(II) 2,7,12,17-tetra-tert-butylporphyrin in the presence of a series of azole derivatives (1-methylimidazole, 1-vinyl-1H-imidazole, 2-(1H-imidazol-1-yl)pyridine, 1-methylbenzimidazole, 1-methyl-1H-1,2,4-triazole, and benzothiazole) affords the corresponding meso-substituted azolium-porphyrins in very mild conditions and good yields. It was found that these nucleophiles were strongly ligated to the zinc(II) azolium-porphyrin complexes. Thus a demetalation/remetalation procedure was performed to recover the non-azole-coordinated zinc(II) complexes.

View Article and Find Full Text PDF

High fracture toughness at cryogenic temperature and radiation hardness can be conflicting requirements for the resins for the impregnation of superconducting magnet coils. The fracture toughness of different epoxy-resin systems at room temperature (RT) and at 77 K was measured, and their toughness was compared with that determined for a polyurethane, polycarbonate (PC) and poly(methyl methacrylate) (PMMA). Among the epoxy resins tested in this study, the MY750 system has the highest 77 K fracture toughness of = 4.

View Article and Find Full Text PDF

Introduction: Antibacterial photodynamic therapy presents a promising alternative to antibiotics, with potential against multidrug-resistant bacteria, offering broad-spectrum action, reduced resistance risk, and improved tissue selectivity.

Areas Covered: This manuscript reviews patent literature in the field of antibacterial photodynamic therapy through the period of 2019-2023. All data are from the US and European patent databases and SciFinder.

View Article and Find Full Text PDF

The development of photodynamic therapy requires access to smart photosensitizers which combine appropriate photophysical and biological properties. Interestingly, supramolecular and dynamic covalent chemistries have recently shown their ability to produce novel architectures and responsive systems through simple self-assembly approaches. Herein, we report the straightforward formation of porphyrin-peptide conjugates and cage compounds which feature on their surface chemical groups promoting cell uptake and specific organelle targeting.

View Article and Find Full Text PDF

Introduction: Photodynamic therapy (PDT) is a reactive oxygen species (ROS)-dependent treatment modality which has emerged as an alternative cancer therapy strategy. However, in solid tumors, the therapeutic efficacy of PDT is strongly reduced by hypoxia, a typical feature of many such tumors. The tumor-associated carbonic anhydrases IX (hCA IX) and XII (hCA XII), which are overexpressed under hypoxia are attractive, validated anticancer drug targets in solid tumors.

View Article and Find Full Text PDF

Three new tetraphenylethene (TPE) push-pull chromophores exhibiting strong intramolecular charge transfer (ICT) are described. They were obtained via [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) click reactions on an electron-rich alkyne-tetrafunctionalized TPE (TPE-alkyne) using both 1,1,2,2-tetracyanoethene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F-TCNQ) as electron-deficient alkenes. Only the starting TPE-alkyne displayed significant AIE behavior, whereas for TPE-TCNE, a faint effect was observed, and for TPE-TCNQ and TPE-F-TCNQ, no fluorescence was observed in any conditions.

View Article and Find Full Text PDF

Electronic and steric properties of NHC ligands functionalized with porphyrins were investigated. When porphyrins are used as NHC-wingtips, nickel(II) in the macrocyle significantly improves the catalytic activity of the neighbouring NHC-Rh(I) complex in the conjugate addition of phenylboronic acid to cyclohexen-2-one.

View Article and Find Full Text PDF

Dynamic covalent polymers (DCPs) offer opportunities as adaptive materials of particular interest for targeting, sensing and delivery of biological molecules. In this view, combining cationic units and fluorescent units along DCP chains is attractive for achieving optical probes for the recognition and delivery of nucleic acids. Here, we report on the design of acylhydrazone-based DCPs combining cationic arginine units with π-conjugated fluorescent moieties based on thiophene-ethynyl-fluorene cores.

View Article and Find Full Text PDF
Article Synopsis
  • * The research focuses on the photodynamic therapy (PDT) potential of the modified diazaporphyrin, known for its ability to absorb light and induce a therapeutic effect.
  • * Successful internalization of the D-mannose-modified diazaporphyrin into breast cancer cells was confirmed using confocal microscopy, demonstrating high PDT activity even at low concentrations and short exposure to light.
View Article and Find Full Text PDF

Synthesis of fluorescent P-hydroxybinaphtylphosphole-oxide or -sulfide was achieved by trapping a binaphtyl dianion with methyl dichlorophosphite or P-(N,N-diethylamino)dichlorophosphine, followed by oxidation or sulfuration of the P-center. After saponification or acid hydrolysis, the P-hydroxyphospholes were coupled to peptides using the coupling agent BOP, under the conditions required for the synthesis in solution or on a solid support. This new method was illustrated by the labeling of the JMV2959, a potent antagonist of the Growth Hormone Secretagogue Receptor type 1a (GHS-R1a).

View Article and Find Full Text PDF

Four porphyrins equipped with imidazolium rings on the positions of their aryl groups were prepared and used as tetrakis(-heterocyclic carbene) (NHC) precursors for the synthesis of porphyrin cages assembled from eight NHC-M bonds (M = Ag or Au). The conformation of the obtained porphyrin cages in solution and their encapsulation properties strongly depend on the structure of the spacer -(CH)- ( = 0 or 1) between aryl groups and peripheral NHC ligands. In the absence of methylene groups ( = 0), porphyrin cages are rather rigid and the short porphyrin-porphyrin distance prevents the encapsulation of guest molecules like 1,4-diazabicyclo[2.

View Article and Find Full Text PDF

Aggregation-induced emitters - or AIEgens - are often symbolised by their photoluminescence enhancement as a result of aggregation in a poor solvent. However, for some applications, it is preferable for the AIE response to be induced in the solid-state. Here, the ability of an organic-inorganic hybrid polymer host to induce the AIE response from embedded silole-based lumophores has been explored.

View Article and Find Full Text PDF

A promising approach to influence and control the photophysical properties of conjugated polymers is directing their molecular conformation by templating. We explore here the templating effect of single-stranded DNA oligomers (ssDNAs) on cationic polythiophenes with the goal to uncover the intermolecular interactions that direct the polymer backbone conformation. We have comprehensively characterized the optical behavior and structure of the polythiophenes in conformationally distinct complexes depending on the sequence of nucleic bases and addressed the effect on the ultrafast excited-state relaxation.

View Article and Find Full Text PDF

Water-soluble π-conjugated polymers are increasingly considered for DNA biosensing. However, the conformational rearrangement, supramolecular organization and dynamics upon interaction with DNA have been overlooked, which prevents the rational design of such detection tools. To elucidate the binding of a cationic polythiophene (CPT) to DNA with atomistic resolution, we performed molecular simulations of their supramolecular assembly.

View Article and Find Full Text PDF

In this work, we exploit the versatile function of cationic phosphonium-conjugated polythiophenes to develop multifunctional platforms for imaging and combined therapy (siRNA delivery and photodynamic therapy). The photophysical properties (absorption, emission and light-induced generation of singlet oxygen) of these cationic polythiophenes were found to be sensitive to molecular weight. Upon light irradiation, low molecular weight cationic polythiophenes were able to light-sensitize surrounding oxygen into reactive oxygen species (ROS) while the highest were not due to its aggregation in aqueous media.

View Article and Find Full Text PDF

Through this Special Issue, you will discover the potentiality of inorganic polymerization (sol-gel process) which is a unique and versatile way for the preparation of materials [...

View Article and Find Full Text PDF

Janus bis(N-heterocyclic carbenes) composed of a porphyrin core with two N-heterocyclic carbene (NHC) heads fused to opposite pyrroles were used as bridging ligands for the preparation of metal complexes. We first focused our attention on the synthesis of gold(i) chloride complexes [(NHC)AuCl] and investigated the substitution of the chloride ligand by acetylides to obtain the corresponding [(NHC)AuC[triple bond, length as m-dash]CR] complexes. Polyacetylides were then used to obtain molecular multiporphyrinic systems with porphyrins fused to only one NHC ligand, while main-chain organometallic polymers (MCOPs) were obtained when using Janus porphyrin bis(NHCs).

View Article and Find Full Text PDF

Chlorophyll derivatives were integrated in "all solid-state" dye sensitized solar cells (DSSCs) with a mesoporous TiO electrode and 2',2',7,7'-tetrakis[,-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene as the hole-transport material. Despite modest power conversion efficiencies (PCEs) between 0.26% and 0.

View Article and Find Full Text PDF

Luminescent solar concentrators (LSCs) are solar-harvesting devices fabricated from a transparent waveguide that is doped or coated with lumophores. Despite their potential for architectural integration, the optical efficiency of LSCs is often limited by incomplete harvesting of solar radiation and aggregation-caused quenching (ACQ) of lumophores in the solid state. Here, we demonstrate a multilumophore LSC design that circumvents these challenges through a combination of nonradiative Förster resonance energy transfer (FRET) and aggregation-induced emission (AIE).

View Article and Find Full Text PDF

Guanine-quadruplexes (G4s) are targets for anticancer therapeutics. In this context, human telomeric DNA (HT-DNA) that can fold into G4s sequences are of particular interest, and their stabilization with small molecules through a visualizable process has become a challenge. As a new type of ligand for HT-G4, we designed a tetraimidazolium tetraphenylethene () as a water-soluble light-up G4 probe.

View Article and Find Full Text PDF

Water-soluble π-conjugated polymers are increasingly envisioned in biosensors, in which their unique optical and electronic properties permit a highly sensitive detection of biomolecular targets. In particular, cationic π-conjugated polymers are attractive for DNA sensing technologies, through the use of the fluorescence signals either in physiological solutions or in thin films. However, in the context of enzymatic activity assays, fluorescence-based methods require covalently labeling DNA with a dye or an antibody and are limited to short time scale due to dye photobleaching.

View Article and Find Full Text PDF