A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine learning to predict the cancer-specific mortality of patients with primary non-metastatic invasive breast cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: We used five machine-learning algorithms to predict cancer-specific mortality after surgical resection of primary non-metastatic invasive breast cancer.

Methods: This study was a secondary analysis of data for 1661 women with primary non-metastatic invasive breast cancer. The overall patient population was divided into a training group and a test group at a ratio of 8:2 and python was used for machine learning to establish the prognosis model.

Results: The machine-learning Gbdt algorithm for cancer-specific death caused by various factors showed the five most important factors, ranked from high to low as follows: the number of regional lymph node metastases, LDH, triglyceride, plasma fibrinogen, and cholesterol. Among the five algorithm models in the test group, the highest accuracy rate was by DecisionTree (0.841), followed by the gbm algorithm (0.838). Among the five algorithms, the AUC values from high to low were GradientBoosting (0.755), gbm (0.755), Logistic (0.733), Forest (0.715), and DecisionTree (0.677).

Conclusion: Machine learning can predict cancer-specific mortality after surgery for patients with primary non-metastatic invasive breast.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00595-020-02170-9DOI Listing

Publication Analysis

Top Keywords

primary non-metastatic
16
non-metastatic invasive
16
invasive breast
16
machine learning
12
predict cancer-specific
12
cancer-specific mortality
12
learning predict
8
patients primary
8
breast cancer
8
test group
8

Similar Publications