98%
921
2 minutes
20
We present an experimental study in which we compare two different pump-probe setups to generate and detect high-frequency laser-induced ultrasound for the detection of gratings buried underneath optically opaque metal layers. One system is built around a high-fluence, low-repetition-rate femtosecond laser (1 kHz) and the other around a low-fluence, high-repetition-rate femtosecond laser (5.1 MHz). We find that the signal diffracted by the acoustic replica of the grating as a function of pump-probe time delay is very different for the two setups used. We attribute this difference to the presence of a constant background field due to optical scattering by interface roughness. In the low-fluence setup, the optical field diffracted by the acoustic replica is significantly weaker than the background optical field, with which it can destructively or constructively interfere. For the right phase difference between the optical fields, this can lead to a significant "amplification" of the weak field diffracted off the grating-shaped acoustic waves. For the high-fluence system, the situation is reversed because the field diffracted off the acoustic-wave-induced grating is significantly larger than the background optical field. Our measurements show that optical scattering by interface roughness must be taken into account to properly explain experiments on laser-induced ultrasound performed with high-repetition-rate laser systems and can be used to enhance signal strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.397264 | DOI Listing |
Stem Cell Rev Rep
September 2025
Department of Medical Genetics and Prenatal Diagnostics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.
View Article and Find Full Text PDFLight Sci Appl
September 2025
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.
Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.
View Article and Find Full Text PDFJ Safety Res
September 2025
Department of Construction Engineering and Management, North China University of Water Resources and Electric Power, Zhengzhou 450046, China. Electronic address:
Introduction: This study aims to provide a comprehensive review of the application of eye-tracking technology in construction safety, establishing a theoretical foundation and benchmark to guide future research and innovation in the field.
Method: This study identified 116 relevant papers published between 2003 and 2023 indexed by Web of Science (WoS), Scopus, and the American Society of Civil Engineers (ASCE) Library. The analysis of the 116 papers revealed trends about the dates of the publication of the papers, the locations of the research, the journals and conference proceedings that published the studies, and the extent of the collaboration between authors, which indicate that eye-tracking technology has become an important tool to enhance construction safety.
J Safety Res
September 2025
Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:
Introduction: Researchers, whether working in wet-labs, dry-labs, clinical settings, or field environments, encounter various hazards. However, there has been limited study on the health and safety of academic researchers. This study aimed to investigate hazardous occupational exposures and safety among researchers in academic settings at a large U.
View Article and Find Full Text PDFJ Environ Manage
September 2025
College of Resources, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, 611130, China. Electronic address:
While organic manure application effectively increases soil organic carbon (SOC) content, it may elevate greenhouse gas emissions. Crop straw, a widely available agricultural residue, enhances SOC through gradual decomposition. The effect of organic manure combined with crop straw on the organic carbon components of paddy soil is still unclear.
View Article and Find Full Text PDF