98%
921
2 minutes
20
Mucopolysaccharidosis type II (MPS II) is an X-linked disorder resulting from a deficiency in iduronate 2-sulfatase (IDS), which is reported to be caused by gene mutations in the iduronate 2-sulfatase (IDS) gene. Many IDS mutation sites have not yet had their causal relationship with MPS II characterized. We employed a gain-of-function strategy whereby we microinjected different mutated zebrafish (z-) mRNAs corresponded to human gene into zebrafish embryos, and then measured their total IDS enzymatic activity and observed the occurrence of defective phenotypes during embryonic development. We examined three known mutation sites for human IDS genes (h-IDS) associated with MPS II symptoms, including h-IDS-P86L, -S333L and -R468W, which corresponded to z--P80L, -S327L and -R454W. When these three mutated z- mRNAs were overexpressed in zebrafish embryos, the IDS enzymatic activity of the total proteins extracted from the injected embryos was not increased compared with the endogenous IDS of the untreated embryos, which suggests that the IDS enzymatic activity of these three mutated z- was totally lost, as expected. Additionally, we observed defective phenotypes in these injected embryos, resulting from the failed IDS enzyme breakdown, which, in turn, has a dominant negative effect on the endogenous wild-type IDS function. These phenotypes were similar to the clinical symptoms observed in MPS II pathogenesis. We further studied six uncharacterized IDS mutation sites as identified by the Taiwanese MPS newborn screening programs. We propose a novel IDS enzyme activity assay combined with phenotypic observation in zebrafish embryos, as an alternative platform for quickly providing a valuable index for preliminarily assessment of any identified IDS point mutation gene that has not yet been characterized, in the context of its role in MPS II development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589091 | PMC |
http://dx.doi.org/10.3390/diagnostics10100854 | DOI Listing |
Dalton Trans
September 2025
Biomedical Inorganic Chemistry Lab, Department of Chemical Sciences, University of Catania, v.le A. Doria 6, 95125, Catania, Italy.
Current anticancer therapy is challenged by the adaptability and resistance of tumor cells as well as limited drug selectivity that causes severe side effects. The scientific community maintains high interest in metal-based chemotherapeutic agents due to their unique interactions with cancer cells, potentially overcoming resistance mechanisms and exploiting the physiopathology of the tumour tissues. Copper, in particular, plays a dual role in cancer, both facilitating tumor progression and triggering cuproptosis, a copper-induced cell death mechanism.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.
Ambroxol (AMB), a common expectorant, enters aquatic environments via wastewater, yet its ecological risks remain unclear. Under UV exposure (15 mJ·cm, λ = 185-400 nm), AMB undergoes photolysis, among the photoproducts, 4-((2-amino-3-bromobenzyl)amino) cyclohexanol (P1) and 2-amino-3,5-dibromobenzaldehyde (DBA) are major species, comprising over 50% of the total photoproduct peak area at the photolytic plateau. Acute toxicity tests with AMB, P1, and DBA in four aquatic species at different trophic levels revealed: the highest sensitivity in (LC = 0.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
The central nervous system (CNS) is particularly vulnerable to endocrine-disrupting chemicals, especially bisphenol analogues. Bisphenol A (BPA), a widely studied compound, has been associated with various neurological disorders, leading to restrictions on its use and the subsequent adoption of alternative chemicals such as 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP). However, concerns regarding the potential neurotoxicity of BPSIP have emerged.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2025
Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan. Electronic address:
Amylin aggregation and the resulting fibrotic toxicity are associated with the pathogenesis of type 2 diabetes mellitus (T2DM). This study evaluated the protective effects of rosmarinic acid (RA) against amylin-induced toxicity in a zebrafish model. Healthy zebrafish embryos from cell stages 1-8 were microinjected with a mixture of 50 μM amylin and 20 μM thioflavin-T (ThT) to induce amylin aggregation and fluorescently label fibril deposition.
View Article and Find Full Text PDFToxicol Sci
September 2025
Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS, B3H 3Z1, Canada.
In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.
View Article and Find Full Text PDF