98%
921
2 minutes
20
In fishes, branchial cytosolic carbonic anhydrase (CA) plays an important role in ion and acid-base regulation. The Ca17a isoform in zebrafish () is expressed abundantly in Na-absorbing/H-secreting H-ATPase-rich (HR) cells. The present study aimed to identify the role of Ca17a in ion and acid-base regulation across life stages using CRISPR/Cas9 gene editing. However, in preliminary experiments, we established that knockout is lethal with mutants exhibiting a significant decrease in survival beginning at ∼12 days postfertilization (dpf) and with no individuals surviving past 19 dpf. Based on these findings, we hypothesized that mutants would display alterations in ion and acid-base balance and that these physiological disturbances might underlie their early demise. Na uptake rates were significantly increased by up to 300% in homozygous mutants compared with wild-type individuals at 4 and 9 dpf; however, whole body Na content remained constant. While Cl uptake was significantly reduced in mutants, Cl content was unaffected. Reduction of CA activity by Ca17a morpholino knockdown or ethoxzolamide treatments similarly reduced Cl uptake, implicating Ca17a in the mechanism of Cl uptake by larval zebrafish. H secretion, O consumption, CO excretion, and ammonia excretion were generally unaltered in mutants. In conclusion, while the loss of Ca17a caused marked changes in ion uptake rates, providing strong evidence for a Ca17a-dependent Cl uptake mechanism, the underlying causes of the lethality of this mutation in zebrafish remain unclear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00215.2020 | DOI Listing |
Langmuir
September 2025
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Low molecular weight amines promote sulfate (SO and HSO) formation through acid-base reactions, contributing to fine particulate matter (PM). Heterogeneous ozonation converts nontoxic amine salts into highly toxic products, yet the ozonation activation mechanism is unclear. This work reveals a sulfate-dominant ozonation mechanism of amine salts in fine PM by combining advanced mass spectrometry and ab initio calculation methods.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.
Fluoride ion batteries (FIBs), as a promising next-generation high-energy-density storage technology, have attracted significant attention. However, developing an ideal fluoride-ion electrolyte that suppresses the β-H abstraction (caused by strong Lewis-basicity F) and electrolyte decomposition remains challenging. To address this bottleneck, we design an electrolyte system based on commercial tetrabutylammonium fluoride (TBAF) salt and 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF) ionic liquid solvent through anion-cation coordination engineering and hard-soft-acid-base (HSAB) balance modulation, unveiling its multiscale mechanisms for mitigating interfacial parasitic reaction and enhancing metal anode stability.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2025
Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK.
Aqueous zinc-ion batteries (ZIBs) offer a safe, cost-effective alternative for large-scale energy storage but are hindered by zinc dendrite growth, hydrogen evolution reactions (HER), and unstable electrode-electrolyte interfaces. These challenges largely stem from strong dipole interactions between symmetric water molecules and Zn, which destabilize the electric double layer (EDL) and trigger parasitic reactions. Drawing inspiration from biological systems that use asymmetric molecular interactions to regulate aqueous environments, we introduce isobutyramide (IAM) as a multifunctional electrolyte additive.
View Article and Find Full Text PDF