Molecular Evolution of Maize Ascorbate Peroxidase Genes and Their Functional Divergence.

Genes (Basel)

School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ascorbate peroxidase (APX) is an important antioxidant enzyme. APXs in maize are encoded by multiple genes and exist as isoenzymes. The evolutionary history and functional divergence of the maize gene family were analyzed through comparative genomic and experimental data on the Internet in this paper. genes in higher plants were divided into classes A, B, and C. Each type of gene in angiosperms only had one ancestral gene that was duplicated along with the genome duplication or local (or tandem) duplication of the angiosperm. A total of eight genes were retained in maize and named , , , , , and The genes of class A were located in the chloroplasts or mitochondria, and the class B and C genes were localized in the peroxisomes and cytoplasm, respectively. The expression patterns of eight were different in vegetative and reproductive organs at different growth and development stages. APXa1 and APXb1 of maize may participate in the antioxidant metabolism of vegetative organs under normal conditions. APXa2, APXb2, APXc1.1, and APXc1.2 may be involved in the stress response, and APXb2 and APXc2 may participate in the senescence response. These results provide a basis for cultivating high-yield and resistant maize varieties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602589PMC
http://dx.doi.org/10.3390/genes11101204DOI Listing

Publication Analysis

Top Keywords

ascorbate peroxidase
8
functional divergence
8
maize
6
genes
6
molecular evolution
4
evolution maize
4
maize ascorbate
4
peroxidase genes
4
genes functional
4
divergence ascorbate
4

Similar Publications

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important herbivorous pest of bottle gourd. We studied the development, reproduction and life table parameters of H. armigera to assess the resistance of eight bottle gourd cultivars, and performed biochemical analysis when H.

View Article and Find Full Text PDF

Previous work has shown that nanoencapsulation of atrazine enhances the herbicidal action of this active ingredient. This increased activity is expected to control weeds and not compromise the tolerance of maize plants to the herbicide. This study aimed to evaluate the tolerance of maize plants to atrazine in postemergence application with different nanoformulations.

View Article and Find Full Text PDF

BBX10 interacts with PIF1 to prevent photo-oxidation and to promote the greening process.

Cell Rep

September 2025

State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Seedlings emerged from the covering soil immediately undergo de-etiolation, ensuring plants switch from heterotrophic to photoautotrophic growth. This transition is essential for seedling development and survival. However, the underlying mechanism remains largely obscure.

View Article and Find Full Text PDF

Nitrogen (N) is essential for plant growth, but excessive fertilizer use decreases nitrogen use efficiency (NUE) and raises environmental concerns. This study investigated the effect of exogenous abscisic acid (ABA; 50 μM) application on rapeseed (Brassica napus L.) plants under hydroponic conditions with high (7.

View Article and Find Full Text PDF

How thyme thrives under drought: insights into photosynthetic and membrane-protective mechanisms.

BMC Biotechnol

September 2025

Horticulture Sciences Department, Faculty of Agriculture and Natural Resource, University of Hormozgan, Bandar Abbas, Iran.

Background: Drought is an abiotic stress that significantly reduces the yield of thyme (Thymus vulgaris). This study investigated how iron oxide nanoparticles (FeNPs), together with symbiotic bacterial (Azospirillum lipoferum) and fungal (Aspergillus oryzae) endophytes, modulate osmotic adjustment, molecular and biochemical mechanisms related to photosynthesis, and drought tolerance mechanisms in thyme.

Results: The experiment was evaluated as a factorial experiment in a completely randomized design with three replications.

View Article and Find Full Text PDF