Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Grapevine (Vitis vinifera L.) is a crop of major economic importance. However, grapevine yield is guaranteed by the massive use of pesticides to counteract pathogen infections. Under temperate-humid climate conditions, downy mildew is a primary threat for viticulture. Downy mildew is caused by the biotrophic oomycete Plasmopara viticola Berl. & de Toni, which can attack grapevine green tissues. In lack of treatments and with favourable weather conditions, downy mildew can devastate up to 75% of grape cultivation in one season and weaken newly born shoots, causing serious economic losses. Nevertheless, the repeated and massive use of some fungicides can lead to environmental pollution, negative impact on non-targeted organisms, development of resistance, residual toxicity and can foster human health concerns. In this manuscript, we provide an innovative approach to obtain specific pathogen protection for plants. By using the yeast two-hybrid approach and the P. viticola cellulose synthase 2 (PvCesA2), as target enzyme, we screened a combinatorial 8 amino acid peptide library with the aim to identify interacting peptides, potentially able to inhibit PvCesa2. Here, we demonstrate that the NoPv1 peptide aptamer prevents P. viticola germ tube formation and grapevine leaf infection without affecting the growth of non-target organisms and without being toxic for human cells. Furthermore, NoPv1 is also able to counteract Phytophthora infestans growth, the causal agent of late blight in potato and tomato, possibly as a consequence of the high amino acid sequence similarity between P. viticola and P. infestans cellulose synthase enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567880PMC
http://dx.doi.org/10.1038/s41598-020-73027-xDOI Listing

Publication Analysis

Top Keywords

downy mildew
16
peptide aptamer
8
late blight
8
conditions downy
8
cellulose synthase
8
amino acid
8
grapevine
5
nopv1 synthetic
4
synthetic antimicrobial
4
antimicrobial peptide
4

Similar Publications

Dataset of Ash gourd plant leaf images for detection and classification.

Data Brief

October 2025

Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka-1216, Bangladesh.

The Ash Gourd dataset is valuable since it was collected from the diverse regions within the district of Dhaka in Bangladesh. This dataset represents one of the first attempts to document, elicit, and categorize the health conditions of Ash Gourd (Benincasa hispida) plants in Bangladesh based on healthy samples, aphid plurality, downy mildew, leaf curl, and leaf miner-infested categories. Ash Gourd is one of the region's most important vegetables because of its nutritional and economic value; thus, it is essential to know diseases' manifestation in the improvement of agricultural productivity.

View Article and Find Full Text PDF

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Introduction: Grapevine is highly susceptible to fungal diseases such as downy mildew and powdery mildew, which are traditionally managed through the intensive use of chemical fungicides. However, in the context of increasingly sustainable viticulture, biofungicides derived from plant and yeast extracts are gaining attention. Despite this, their impact on the grapevine leaf microbiome, crucial for plant health and disease resilience, remains underexplored.

View Article and Find Full Text PDF

Downy mildew, caused by the oomycete , is the most destructive foliar disease of cucumbers. While partially resistant slicer cultivars (with spined fruits) are commercially available, no resistant Beit Alpha cultivars (characterized by smooth, dark green fruit) have been developed to date. Here, we report the successful breeding of downy mildew-resistant Beit Alpha cucumber lines.

View Article and Find Full Text PDF

Vitis vinifera grapevines are susceptible to downy and powdery mildews, requiring 4-10 chemical treatments per season in Israel. Resistant grape varieties offer an alternative. Hybrid varieties developed by the Weinbauinstitut Freiburg were introduced in Israel for disease resistance evaluation in different climatic regions through an understanding of the resistance mechanism based on secondary metabolite profiles.

View Article and Find Full Text PDF