Predicting cell-to-cell communication networks using NATMI.

Nat Commun

Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of high throughput single-cell sequencing technologies has made it cost-effective to profile thousands of cells from diverse samples containing multiple cell types. To study how these different cell types work together, here we develop NATMI (Network Analysis Toolkit for Multicellular Interactions). NATMI uses connectomeDB2020 (a database of 2293 manually curated ligand-receptor pairs with literature support) to predict and visualise cell-to-cell communication networks from single-cell (or bulk) expression data. Using multiple published single-cell datasets we demonstrate how NATMI can be used to identify (i) the cell-type pairs that are communicating the most (or most specifically) within a network, (ii) the most active (or specific) ligand-receptor pairs active within a network, (iii) putative highly-communicating cellular communities and (iv) differences in intercellular communication when profiling given cell types under different conditions. Furthermore, analysis of the Tabula Muris (organism-wide) atlas confirms our previous prediction that autocrine signalling is a major feature of cell-to-cell communication networks, while also revealing that hundreds of ligands and their cognate receptors are co-expressed in individual cells suggesting a substantial potential for self-signalling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538930PMC
http://dx.doi.org/10.1038/s41467-020-18873-zDOI Listing

Publication Analysis

Top Keywords

cell-to-cell communication
12
communication networks
12
cell types
12
ligand-receptor pairs
8
predicting cell-to-cell
4
communication
4
natmi
4
networks natmi
4
natmi development
4
development high
4

Similar Publications

Exploring the Role of β-1,3-Glucanase in Aerenchyma Development in Sugarcane Roots.

Ann Bot

September 2025

Laboratório de Fisiologia Ecológica de Plantas, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Brasil.

Background And Aims: Aerenchyma formation has emerged as a promising model for understanding cell wall modifications. Certain cells undergo programmed cell death (PCD), while others do not, suggesting the existence of a tightly regulated signaling dispersion mechanism. Cell-to-cell communication occurs via plasmodesmata, whose permeability is regulated by the deposition of callose (β-1,3-glucan) and its degradation by β-1,3-glucanase.

View Article and Find Full Text PDF

The timely release of chemical messengers is a crucial step in cell-to-cell communication. Does this release occur as a passive diffusion from the donor membrane or it is actively regulated? A series of studies indicated that chemical messengers' secretion is "sub-quantal". This mode of secretion demands a strongly regulated release mechanism and calls for a thorough characterization of the release sites.

View Article and Find Full Text PDF

Extracellular vesicles: key mediators in embryo production.

Front Vet Sci

August 2025

Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Nano-sized extracellular vesicles (EVs) possess a lipid bilayer and are secreted from cells into their surrounding environment. The transport of multiple biomolecules, including DNA together with RNA, microRNAs (miRNAs), lipids, proteins, and metabolites, happens through biofluids via EVs for intercellular communication. Extracellular vesicles play crucial roles during the embryo production (IVEP) process.

View Article and Find Full Text PDF

Cross-feeding percolation phase transitions of intercellular metabolic networks.

Sci Adv

September 2025

Biofisika Institutua (UPV/EHU, CSIC) and Fundacion Biofisica Bizkaia, Leioa E-48940, Spain.

Intercellular cross-talk is essential for the adaptation capabilities of populations of cells. While direct diffusion-driven cell-to-cell exchanges are difficult to map, current nanotechnology enables one to probe single-cell exchanges with the medium. We introduce a mathematical method to reconstruct the dynamic unfolding of intercellular exchange networks from these data, applying it to an experimental coculture system.

View Article and Find Full Text PDF

Red blood cell extracellular vesicles: new frontiers in hematological biomarker discovery.

Front Med (Lausanne)

August 2025

Department of Zoology, Biomedical Technology, Human Genetics & Wildlife Biology and Conservation, School of Sciences, Gujarat University, Ahmedabad, India.

Extracellular vesicles (EVs) offer promising opportunities in hematology for improved diagnostics, prognostics, and therapeutics, making them valuable tools in the molecular landscape. EVs derived from red blood cells (RBCs) are the primary source of EVs in the bloodstream. They perform several critical biological and physiological functions, such as facilitating intercellular communication and transferring biomolecules like DNA, RNA, and proteins.

View Article and Find Full Text PDF