Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optoretinography-the non-invasive, optical imaging of light-induced functional activity in the retina-stands to provide a critical biomarker for testing the safety and efficacy of new therapies as well as their rapid translation to the clinic. Optical phase change in response to light, as readily accessible in phase-resolved OCT, offers a path towards all-optical imaging of retinal function. However, typical human eye motion adversely affects phase stability. In addition, recording fast light-induced retinal events necessitates high-speed acquisition. Here, we introduce a high-speed line-scan spectral domain OCT with adaptive optics (AO), aimed at volumetric imaging and phase-resolved acquisition of retinal responses to light. By virtue of parallel acquisition of an entire retinal cross-section (B-scan) in a single high-speed camera frame, depth-resolved tomograms at speeds up to 16 kHz were achieved with high sensitivity and phase stability. To optimize spectral and spatial resolution, an anamorphic detection paradigm was introduced, enabling improved light collection efficiency and signal roll-off compared to traditional methods. The benefits in speed, resolution and sensitivity were exemplified in imaging nanometer-millisecond scale light-induced optical path length changes in cone photoreceptor outer segments. With 660 nm stimuli, individual cone responses readily segregated into three clusters, corresponding to long, middle, and short-wavelength cones. Recording such optoretinograms on spatial scales ranging from individual cones, to 100 µm-wide retinal patches offers a robust and sensitive biomarker for cone function in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510866PMC
http://dx.doi.org/10.1364/BOE.399034DOI Listing

Publication Analysis

Top Keywords

adaptive optics
8
phase stability
8
retinal
5
high-speed
4
high-speed adaptive
4
optics line-scan
4
line-scan oct
4
oct cellular-resolution
4
cellular-resolution optoretinography
4
optoretinography optoretinography-the
4

Similar Publications

Optoelectronic polymer memristors with dynamic control for power-efficient in-sensor edge computing.

Light Sci Appl

September 2025

State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.

As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.

View Article and Find Full Text PDF

Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.

View Article and Find Full Text PDF

A soft micron accuracy robot design and clinical validation for retinal surgery.

Microsyst Nanoeng

September 2025

Department of Ophthalmology, Key Laboratory of Precision Medicine for Eye Diseases of Zhejiang Province, Center for Rehabilitation Medicine,, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 314408, China.

Retinal surgery is one of the most delicate and complex operations, which is close to or even beyond the physiological limitation of the human hand. Robots have demonstrated the ability to filter hand tremors and motion scaling which has a promising output in microsurgery. Here, we present a novel soft micron accuracy robot (SMAR) for retinal surgery and achieve a more precise and safer operation.

View Article and Find Full Text PDF

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

A 65-year-old male patient presented with "blurred vision in the right eye for 1 week". At the first visit, the best corrected visual acuity (BCVA) of both eyes was 0.8, no obvious abnormalities were observed in fundus examination, and optical coherence tomography (OCT) revealed the loss of outer retinal layers adjacent to the macula in the right eye.

View Article and Find Full Text PDF