Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metallic glasses (MGs) are promising candidates for catalysts with high efficiency for dyeing wastewater remediation, due to their metastable nature, disordered structure, and large residual stresses. However, dyeing wastewater usually contains a high concentration of inorganic ions which may have adverse effects on the degradation process, while the impacts of these ions on MGs' degradation capability have often been overlooked and still remain unknown. Thus, the roles of inorganic ions (Cl, NO, SO, and HPO) on the degradation of azo dye by Fe-based MG with nominal composition of FeSiBCu were systematically investigated. The results showed that the inorganic ions have significant influence on MG's surface morphology, degradation capability, mineralization and durability. All these aspects need to be considered prior to application of MGs for azo dyes degradation in real natural contaminated water or saline wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.128392DOI Listing

Publication Analysis

Top Keywords

inorganic ions
16
degradation capability
12
dyeing wastewater
12
wastewater remediation
8
degradation
6
ions
5
influence inorganic
4
ions degradation
4
capability fe-based
4
fe-based metallic
4

Similar Publications

We report the synthesis and characterization of a new Schiff base ligand (HL), derived from 2-picolylamine and 2-hydroxy-3-methoxy-5-methylbenzaldehyde. Its reaction with Ni(NO)·6HO and Ln(NO)·HO (Ln = Gd, Tb, Dy) in the presence of triethylamine affords a carbonato-bridged family of heterobimetallic NiLn complexes: [NiLn(L)(L')(μ-CO)(NO)]·MeOH·HO (). During the complexation reaction, ligand HL undergoes an oxidation, followed by C-C coupling to generate a secondary ligand (HL').

View Article and Find Full Text PDF

Immune cells, such as macrophages, stimulated by several types of inorganic ions released from bioactive glasses secrete cytokines that promote and inhibit bone formation. In this study, the effects of borate-ion-stimulated mouse macrophages (RAW264) on the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (KUSA-A1) are investigated. KUSA-A1 is cultured with a borate-ion-containing medium and RAW264-conditioned medium, which contained the secretome released from boron-stimulated RAW264, and its osteogenic differentiation is evaluated.

View Article and Find Full Text PDF

Sodium Orthovanadate (SOV) mitigates alcohol & alcohol plus high-fat diet (HFD)-induced hepatotoxicity in rats.

Cell Mol Biol (Noisy-le-grand)

September 2025

Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.

Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.

View Article and Find Full Text PDF

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF

Inorganic halide perovskites have been the subject of intensive research for their unique properties. Most current research focuses on halide ion exchange to modify the luminescence band gap and optical features. They are obtained mainly in colloids or thin layers, resulting in small grains with a narrow distribution.

View Article and Find Full Text PDF