98%
921
2 minutes
20
A liquid chromatography tandem mass spectrometry-based method for the quantitation of 39 lipid mediators in four sample types and in two mouse strains is described. The method builds upon existing methodologies for analysis of lipid mediators by A) utilizing a bead homogenization step for tissue samples; this eliminates the need for homogenization glassware and improves homogenization consistency, B) optimizing the isolation and purification of lipid mediators with polymeric reverse phase SPE columns with lower sorbent masses; this results in lower solvent elution volumes without loss of recovery and C) utilizing an on-column enrichment method to improve analyte focusing before chromatographic separation. The method is linear from 0.25-250 pg on column for low level lipid mediators and from 5-5000 pg on column for high level lipid mediators. The addition of a methyl formate elution step to a previously published method dramatically improved precision and recovery for the cysteinyl leukotrienes. Accuracy and precision for 4 different sample types including human plasma, mouse lung, mouse spleen and mouse liver is demonstrated. Liver samples had extremely high levels of a tentatively identified bile acid which interfered with quantitation of resolvin E1, 11B-prostaglandin F2a and thromboxane A2. Results from 2 different tissue sources from untreated mice (C57BL/6 versus BALB/c) showed dramatically different concentrations of lipid mediators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.prostaglandins.2020.106483 | DOI Listing |
Curr Opin Lipidol
August 2025
Cardiometabolic Immunity Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute (BDI) and Victorian Heart Institute (VHI), Monash University, Melbourne, Victoria, Australia.
Purpose Of Review: This review explores the evolving understanding of efferocytosis - the clearance of dead or dying cells by phagocytes - in the context of atherosclerosis. It highlights recent discovers in cell death modalities, impaired clearance mechanisms and emerging therapeutic strategies aimed at restoring efferocytosis to stabilize plaques and resolve inflammation.
Recent Findings: Recent studies have expanded the scope of efferocytosis beyond apoptotic cells to include other pro-inflammatory cell death modes, including pyroptosis, necroptosis and ferroptosis, revealing context-dependent clearance efficiency and immunological outcomes.
Cell Physiol Biochem
September 2025
Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland, E-Mail:
Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins.
View Article and Find Full Text PDFJ Proteome Res
September 2025
School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.
Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.
View Article and Find Full Text PDFClin Mol Hepatol
September 2025
Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
Background/aims: Endoplasmic reticulum (ER) stress in hepatocytes plays a causative role in alcohol-associated liver disease (ALD). The incomplete inhibition of ER stress by targeting canonical ER stress sensor proteins suggests the existence of noncanonical ER stress pathways in ALD pathology. This study aimed to delineate the role of RAB25 in ALD and its regulatory mechanism in noncanonical ER stress pathways.
View Article and Find Full Text PDFAPMIS
September 2025
Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat, Türkiye.
Pyroptosis is a lytic and pro-inflammatory regulated cell death pathway mediated by pores formed by the oligomerization of gasdermin proteins on cellular membranes. Different pro-inflammatory molecules such as interleukin-18 are released from these pores, promoting inflammation. Pyroptotic cell death has been implicated in many pathological conditions, including cancer and liver diseases.
View Article and Find Full Text PDF