Skeletal muscle IGF-1 is lower at rest and after resistance exercise in humans with obesity.

Eur J Appl Physiol

Department of Health and Kinesiology and Max E, Wastl Human Performance Laboratory, Purdue University, 800 W. Stadium Ave, West Lafayette, IN, 47907, USA.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Obesity is associated with numerous changes in skeletal muscle including greater muscle mass and muscle fiber cross sectional area (FCSA), yet fasted muscle protein synthesis is lower. Activation of the IGF-1/Akt/mTOR pathway is critical for muscle mass maintenance, muscle hypertrophy, and muscle protein regulation. Resistance exercise (RE) increases muscle mass, FCSA, and IGF-1. Persons with obesity have greater skeletal muscle mass and larger skeletal muscle fiber cross sectional area. The IGF-1/Akt/mTOR pathway is critical for the regulation of skeletal muscle mass. Our study found men and women with obesity have lower skeletal muscle IGF-1 mRNA and protein and higher expression of miR-206 an epigenetic regulator of IGF-1, at rest and following an acute bout of resistance exercise. Despite this, Akt mediated signaling was maintained and maintenance of phosphorylation does not appear to be accounted for by compensatory pathways. Our findings suggest a possible negative feedback mechanism via increased miR-206 and in turn decreased IGF-1 to limit further skeletal muscle hypertrophy in persons with obesity. The current work investigated if: (1) obesity dysregulates basal skeletal muscle IGF-1 pathways; and (2) obesity augments the muscle IGF-1 pathway responses to acute RE.

Methods: Eight sedentary (no self-reported physical activity), lean (LN) and eight sedentary subjects with obesity (OB) had vastus lateralis biopsies taken at rest, and 15 min and 3 h post-acute RE for the measurement of the IGF-1 pathway and muscle FCSA.

Results: Type II FCSA was larger in OB vs. LN. Skeletal muscle IGF-1 mRNA and IGF-1 protein were lower in OB vs. LN at rest and post-exercise. Acute RE increased IGF-1 protein similarly in both groups. The expression of miR-206, a post-transcriptional inhibitor of IGF-1 expression, was higher in OB vs. LN and linked with lower IGF-1 mRNA (r =  - 0.54).

Conclusion: In spite of greater muscle FCSA, muscle IGF-1 expression was lower in obesity suggesting negative feedback may be limiting muscle mass expansion in obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-020-04509-zDOI Listing

Publication Analysis

Top Keywords

skeletal muscle
36
muscle igf-1
24
muscle mass
24
muscle
20
igf-1
14
igf-1 mrna
12
obesity
10
skeletal
9
lower rest
8
resistance exercise
8

Similar Publications

Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.

Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

Introduction: medial patellofemoral ligament (MPFL) reconstruction using an autologous quadriceps tendon graft to treat patellofemoral dislocation in the pediatric population is a surgical alternative that may offer advantages compared to other types of grafts. We assessed clinical and functional outcomes, rate of return to sport, and complications in a cohort of pediatric patients.

Material And Methods: retrospective and descriptive cohort study.

View Article and Find Full Text PDF

Comment on "Low skeletal muscle mass and not systemic inflammation is associated with complications after free forearm flap reconstruction in oral cancer patients".

Oral Oncol

September 2025

Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India. Electronic address:

View Article and Find Full Text PDF

Electrical pulse generator for electroporation induction in myocytes: Compared effects on skeletal and cardiac cells.

Med Eng Phys

October 2025

Departament of Electronics and Biomedical Engineering, School of Electrical and Computer Engineering (DEEB/FEEC), University of Campinas (UNICAMP), Campinas, SP, Brazil; National Laboratory for Study of Cell Calcium (LabNECC), Center for Biomedical Engineering (CEB), UNICAMP, Campinas, SP, Brazil.

High-intensity, external electric fields (HIEF) have been used in research and therapy for abnormal generation/propagation of the cardiac electrical activity (e.g., defibrillation), and for promoting access of membrane-impermeant molecules into the cytosol through electropores.

View Article and Find Full Text PDF