98%
921
2 minutes
20
Inertial Measurement Units (IMUs), an alternative to 3D optical motion capture, are growing in popularity to assess sports-related movements. This study validated an IMU system against a "gold-standard" optical motion capture system during common sports movements. Forty-nine healthy adults performed six movements common to a variety of sports applications (cutting, running, jumping, single leg squats, and cross-over twist) while simultaneously outfitted with standard, retroreflective markers and a wireless IMU system. Bias, RMSE, precision, and maximum absolute error (MAE) were calculated to compare the two systems at the lower extremity joints and the trunk in all planes of movement and for all activities. The MAE difference between fast and slow activities for the sagittal, transverse, and frontal planes were 11.62°, 7.41°, and 5.82°, respectively. For bias, the IMU system tended to report larger angles than the optical motion capture system in the transverse and frontal planes and smaller angles in the sagittal plane. Average intraclass correlation coefficients for the sagittal, transverse, and frontal planes were 0.81±0.17, 0.38±0.19, and 0.22±0.37, respectively. When calculating a global bias across all three planes, the IMU system reported nearly identical angles (< 3.5° difference) to the optical motion capture system. The global precision across all planes was 2-6.5°, and the global RMSE was 7-10.5°. However, the global MAE was 11-23°. Overall, and with suggestions for methodological improvement to further reduce measurement errors, these results support current applications and also indicate the need for continued validation and improvement of IMU systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2020.08.001 | DOI Listing |
ACS Nano
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2025
Human beings have the ability to continuously analyze a video and immediately extract the motion components. We want to adopt this paradigm to provide a coherent and stable motion segmentation over the video sequence. In this perspective, we propose a novel long-term spatio-temporal model operating in a totally unsupervised way.
View Article and Find Full Text PDFPLoS One
September 2025
School of Health & Society, University of Salford, Salford, Greater Manchester, United Kingdom.
Background: Velocity-Based Training (VBT) is an emerging method in resistance training for objectively prescribing and monitoring training intensity and neuromuscular function. Given its growing popularity, assessing the validity and reliability of VBT devices is critical for strength and conditioning coaches.
Objective: The primary purpose of this review was twofold: (1) to identify and address methodological gaps in current assessments of VBT device validity and reliability, and (2) to propose and apply a novel, multi-layered, criterion-based framework-developed in collaboration with statisticians and domain experts-for evaluating these devices.
J Vis Exp
August 2025
Marianne Bernadotte Centrum, Department for Clinical Neuroscience, Karolinska Institutet; St Erik Eye Hospital.
The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.
View Article and Find Full Text PDFAm Psychol
September 2025
State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences.
In cluttered and complex natural scenes, selective attention enables the visual system to prioritize relevant information. This process is guided not only by perceptual cues but also by imagined ones. The current research extends the imagery-induced attentional bias to the unconscious level and reveals its cross-category applicability between different social cues (e.
View Article and Find Full Text PDF