Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: High-sensitivity troponin (hs-cTn) assays are central to the diagnosis of myocardial infarction (MI). Their increased sensitivity has facilitated rapid pathways for the exclusion of MI. However, hs-cTn is now more readily detectable in patients without symptoms typical of MI, in whom a degree of myocardial injury is assumed. Recently, the practice of using the 99 centile of hs-cTn as a working 'upper reference limit' has been challenged. There is increasing evidence that hs-cTn may provide useful prognostic information, regardless of any suspicion of MI, and as such these assays may have potential as a general biomarker for mortality. This raises the concept that detection of hs-cTn 'never means nothing.'

Areas Covered: In this review, we will evaluate the evidence for the use of hs-cTn assays outside their common clinical indication to rule out or diagnose acute MI.

Expert Opinion: The data presented suggest that hs-cTn testing may in the future have a generalized role as a biomarker of mortality risk and may be used less as a test for ruling in acute MI, but will remain a frontline test to exclude that diagnosis in ED. Further, the data suggest that the detection of hs-cTn 'never means nothing.'

Download full-text PDF

Source
http://dx.doi.org/10.1080/14779072.2020.1828063DOI Listing

Publication Analysis

Top Keywords

concept detection
8
high-sensitivity troponin
8
'never nothing'
8
hs-ctn
8
hs-ctn assays
8
evidence hs-ctn
8
biomarker mortality
8
detection hs-ctn
8
hs-ctn 'never
8
true clinical
4

Similar Publications

Research progress of DNA barcoding in precision medicine and molecular diagnosis- A review.

Anal Chim Acta

November 2025

Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.

Background: A DNA barcode is a short DNA fragment used to classify and identify specific organisms, taking advantage of the specificity and diversity inherent in biological molecules. Since Herbert introduced the concept in 2003, DNA barcoding has been increasingly used in precision medicine and related fields, including species identification and environmental monitoring, over the past few decades. Although numerous molecular diagnostic techniques have emerged, many face notable obstacles such as sensitivity to handling conditions, high expenses, and limitations in accuracy.

View Article and Find Full Text PDF

ESCMID workshop: Artificial Intelligence and Machine Learning in Medical Microbiology Diagnostics.

Microbes Infect

September 2025

Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland; ESCMID study group on Molecular Diagnostics and Genomics. Electronic address:

Rapid advancements in artificial intelligence (AI) and machine learning (ML) offer significant potential to transform medical microbiology diagnostics, improving pathogen identification, antimicrobial susceptibility prediction and outbreak detection. To address these opportunities and challenges, the ESCMID workshop, "Artificial Intelligence and Machine Learning in Medical Microbiology Diagnostics", was held in Zurich, Switzerland, from June 2-5, 2025. The course featured expert lectures, practical sessions and panel discussions covering foundational ML concepts and deep learning architectures, data interoperability, quality control processes, model development and validation strategies.

View Article and Find Full Text PDF

Cancer is a complex and heterogeneous disease characterized by the accumulation of genetic and epigenetic alterations that drive uncontrolled cellular proliferation and survival. This review provides a comprehensive overview of key cancer driver genes, including oncogenes such as KRAS and PIK3CA, as well as tumor suppressor genes like TP53, PTEN, and CDKN2A, highlighting their molecular mechanisms and roles across various types of cancer. Leveraging insights from large-scale cancer genome initiatives and whole-genome sequencing, we examine the landscape of somatic mutations and their association with hallmark cancer pathways, including cell cycle regulation, apoptosis, metabolic reprogramming, and immune evasion.

View Article and Find Full Text PDF

Abnormal levels of trypsin in the human body can lead to various diseases, yet conventional detection methods often lack operational simplicity and real-time readout capabilities. This work presents a state-of-the-art metal organic framework (MOF) nanozyme-integrated liquid crystal (LC) sensor (MHN-LC sensor) and demonstrates the detection of trypsin as a proof of the concept. By rational engineering of the MOF-808 framework with Al and l-histidine coordination, a novel MOF nanozyme (MHis-NE) exhibiting exceptional acetylcholinesterase (AChE)-mimetic activity is successfully prepared.

View Article and Find Full Text PDF

Target-Triggered Self-Assembly of Peptides with Silver Nanoparticles for Electrochemical Biosensing.

Chemistry

September 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China.

Peptides have great potential in the design and fabrication of biosensors because of their high specificity, multifunctionality, and relatively low cost. In this paper, we report an electrochemical biosensor leveraging multifunctional peptides and silver nanoparticles for integrated target recognition, self-assembly, and signal output. As a proof of concept, we chose granzyme B (GrB) as a model target.

View Article and Find Full Text PDF