98%
921
2 minutes
20
Microvesicles (MVs) are found in several types of body fluids and are promising disease biomarkers and therapeutic targets. This study aimed to develop a novel biofunctionalized surface for binding plasma microvesicles (PMVs) based on a lab-on-a-chip (LOC) approach. A new lactadherin (LACT)-functionalized surface was prepared and examined for monitoring PMVs. Moreover, two different strategies of LACT immobilization on a silicon surface were applied to compare different LACT orientations. A higher PMV to LACT binding efficiency was observed for LACT bonded to an αvβ3 integrin-functionalized surface compared with that for LACT directly bonded to a glutaraldehyde-modified surface. Effective binding of PMVs and its components for both LACT immobilization strategies was confirmed using spectral ellipsometry and time-of-flight secondary ion mass spectrometry methods. The proposed PMV capturing system can be used as a foundation to design novel point-of-care (POC) diagnostic devices to detect and characterize PMVs in clinical samples. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7584542 | PMC |
http://dx.doi.org/10.1007/s00216-020-02938-5 | DOI Listing |
J Chem Phys
September 2025
Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-Ku, Yokohama 236-0027, Kanagawa, Japan.
Perovskite-silicon tandem solar cells have attracted considerable attention owing to their high power conversion efficiency (PCE), which exceeds the limits of single-junction devices. This study focused on lead-free tin-based perovskites with iodine-bromine mixed anions. Bromide perovskites have a wide bandgap; therefore, they are promising light absorbers for perovskite-silicon tandem solar cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310058, China.
We report an electro-enhanced catalytic etching approach for direct atomic-level patterning of single-crystal 4H-SiC (0001) surfaces. The process utilizes platinum-coated probes under a negative sample bias, which enhances catalytic reactions and promotes etching of SiC without additional mechanical load. Unlike traditional etching approaches that rely on hazardous chemicals such as hydrofluoric acid, this approach operates under ambient conditions, offering improved safety and environmental compatibility.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China.
Nanoplastics are emerging pollutants with the potential to disrupt the microbial physiology and biogeochemical cycles in marine ecosystems. However, their influence on silicon cycling in cyanobacteria remains poorly understood. Here, we investigate how amine-modified polystyrene nanoplastics (PS-NH) regulate silicon transport and biosilica deposition in sp.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, P.R. China.
Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.
View Article and Find Full Text PDFSci Prog
September 2025
School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China.
To address the growing demand for temperature control precision and uniformity in wafer processing, a specialized electrostatic chuck temperature control system based on thermal control coatings is proposed, aiming to enhance thermal management robustness and homogeneity. This study employs a zoned control methodology using metal-oxide conductive coatings on silicon carbide wafer heating plates. A quadrant-based thermal control coating model was established, and finite element analysis was conducted to compare temperature distribution characteristics across three geometric configurations: sectorial, spiral, and zoned designs.
View Article and Find Full Text PDF