Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Peripheral nerves are able to regenerate spontaneously after injury. An increasing number of studies have investigated the mechanism of peripheral nerve regeneration and attempted to find potential therapeutic targets. The various bioinformatics analysis tools available, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) networks can effectively screen the crucial targets of neuroregeneration.
Methods: GSEA and PPI networks were constructed through ingenuity pathway analysis and sequential gene expression validation to investigate the molecular processes at 1, 4, 7, and 14 days following sciatic nerve transection in rats.
Results: Immune response and the activation of related canonical pathways were classified as crucial biological events. Additionally, neural precursor cell expressed developmentally downregulated 4-like (NEDD4L), neuregulin 1 (NRG1), nuclear factor of activated T cells 2 (NFATC2), midline 1 (MID1), GLI family zinc finger 2 (GLI2), and ventral anterior homeobox 1 (VAX1), which were jointly involved in both immune response and axonal regeneration, were screened and their mRNA and protein expressions following nerve injury were validated. Among them, the expression of VAX1 continuously increased following nerve injury, and it was considered to be a potential therapeutic target.
Conclusions: The combined use of GSEA and PPI networks serves as a valuable way to identify potential therapeutic targets for neuroregeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475449 | PMC |
http://dx.doi.org/10.21037/atm-20-4958 | DOI Listing |