98%
921
2 minutes
20
The vision for precision medicine is to use individual patient characteristics to inform a personalized treatment plan that leads to the best possible health-care for each patient. Mobile technologies have an important role to play in this vision as they offer a means to monitor a patient's health status in real-time and subsequently to deliver interventions if, when, and in the dose that they are needed. Dynamic treatment regimes formalize individualized treatment plans as sequences of decision rules, one per stage of clinical intervention, that map current patient information to a recommended treatment. However, most existing methods for estimating optimal dynamic treatment regimes are designed for a small number of fixed decision points occurring on a coarse time-scale. We propose a new reinforcement learning method for estimating an optimal treatment regime that is applicable to data collected using mobile technologies in an out-patient setting. The proposed method accommodates an indefinite time horizon and minute-by-minute decision making that are common in mobile health applications. We show that the proposed estimators are consistent and asymptotically normal under mild conditions. The proposed methods are applied to estimate an optimal dynamic treatment regime for controlling blood glucose levels in patients with type 1 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500510 | PMC |
http://dx.doi.org/10.1080/01621459.2018.1537919 | DOI Listing |
J Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
School of Nursing, Capital Medical University, Beijing, China.
Importance: The efficacy of home end-of-life care in enhancing the quality of life for terminally ill patients and families has been well documented. While previous studies have explored perspectives on quality home palliative care and end-of-life care in several countries, limited knowledge exists regarding its specific components in the Chinese context.
Objective: To explore the core elements that constitute quality home end-of-life care in China.
Cereb Cortex
August 2025
Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.
View Article and Find Full Text PDFVet Res Commun
September 2025
College of Veterinary Medicine, Vietnam National University of Agriculture, 100000, Hanoi, Vietnam.
African swine fever (ASF) is a contagious viral disease that affects domestic pigs and Eurasian wild boars, causing significant economic losses to the global pig industry. Since its first outbreak in February 2019, ASF has had a profound impact on the Vietnamese pig sector. This review presents a comprehensive analysis of ASF outbreaks in Vietnam from 2019 to 2024, focusing on outbreak dynamics, control strategies, economic impact, and key lessons learned.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.