A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ginsenoside Rg1 reduces β‑amyloid levels by inhibiting CDΚ5‑induced PPARγ phosphorylation in a neuron model of Alzheimer's disease. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accumulation of β‑amyloid peptides (Aβ) in the brain is a hallmark of Alzheimer's disease (AD). Studies have indicated that ginsenoside Rg1, a primary component of ginseng (Panax ginseng), reduces brain Aβ levels in an AD model through peroxisome proliferator‑activated receptor γ (PPARγ), thereby regulating the expression of insulin‑degrading enzyme (Ide) and β‑amyloid cleavage enzyme 1 (Bace1), which are PPARγ target genes. However, the effects of ginsenoside Rg1 on PPARγ remain unclear. Since cyclin‑dependent kinase 5 (CDK5) mediates PPARγ phosphorylation in adipose tissue, this study aimed to investigate whether ginsenoside Rg1 regulates PPARγ target genes and reduces Aβ levels by inhibiting PPARγ phosphorylation through the CDK5 pathway. In the present study, a model of AD was established by treating primary cultured rat hippocampal neurons with Aβ1‑42. The cells were pretreatment with ginsenoside Rg1 and roscovitine, a CDK5‑inhibitor, prior to the treatment with Aβ1‑42. Neuronal apoptosis was detected using TUNEL staining. PPARγ phosphorylation and protein expression levels of PPARγ, CDK5, IDE, BACE1, amyloid precursor protein (APP) and Aβ1‑42 were measured by western blotting. The mRNA expression levels of PPARγ, CDK5, IDE, BACE1 and APP were assessed using reverse transcription‑quantitative PCR. The results of the present study demonstrated that in an AD model induced by Aβ1‑42, ginsenoside Rg1 significantly decreased CDK5 expression, inhibited PPARγ phosphorylation at serine 273, elevated IDE expression, downregulated BACE1 and APP expression, decreased Aβ1‑42 levels and attenuated neuronal apoptosis. The CDK5 inhibitor, roscovitine, demonstrated similar effects. These results suggest that ginsenoside Rg1 has neuroprotective properties and has potential for use in the treatment of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453505PMC
http://dx.doi.org/10.3892/mmr.2020.11424DOI Listing

Publication Analysis

Top Keywords

ginsenoside rg1
28
pparγ phosphorylation
20
pparγ
11
levels inhibiting
8
alzheimer's disease
8
aβ levels
8
pparγ target
8
target genes
8
effects ginsenoside
8
neuronal apoptosis
8

Similar Publications