98%
921
2 minutes
20
Objectives: To determine whether dentin-adhesive interface stability would be improved by dimethyl sulfoxide (DMSO) wet-bonding and epigallocatechin-3-gallate (EGCG).
Methods: Etched dentin surfaces from sound third molars were randomly assigned to five groups according to different pretreatments: group 1, water wet-bonding (WWB); group 2, 50% (v/v) DMSO wet-bonding (DWB); groups 3-5, 0.01, 0.1, and 1 wt% EGCG-incorporated 50% (v/v) DMSO wet-bonding (0.01%, 0.1%, and 1%EGCG/DWB). Singlebond universal adhesive was applied to the pretreated dentin surfaces, and composite buildups were constructed. Microtensile bond strength (μTBS) and interfacial nanoleakage were respectively examined after 24 h water storage or 1-month collagenase ageing. In situ zymography andStreptococcus mutans (S. mutans) biofilm formation were also investigated.
Results: After collagenase ageing, μTBS of groups 4 (0.1%EGCG/DWB) and 5 (1%EGCG/DWB) did not decrease (p > 0.05) and was higher than that of the other three groups (p < 0.05). Nanoleakage expression of groups 4 and 5 was less than that of the other three groups (p < 0.05), regardless of collagenase ageing. Metalloproteinase activities within the hybrid layer in groups 4 and 5 were suppressed. Furthermore, pretreatment with 1%EGCG/DWB (group 5) efficiently inhibited S. mutans biofilm formation along the dentin-adhesive interface.
Significance: This study suggested that the synergistic action of DMSO wet-bonding and EGCG can effectively improve dentin-adhesive interface stability. This strategy provides clinicians with promising benefits to achieve desirable dentin bonding performance and to prevent secondary caries, thereby extending the longevity of adhesive restorations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2020.08.009 | DOI Listing |
Dent Mater
February 2025
Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland. Electronic address:
Objectives: To examine whether the effectiveness of current dentin-priming approaches requiring solvated hydrophilic resins may be replicated by modifying the infiltration dynamics of neat methacrylate-based monomers into dry-etched dentin using dimethyl sulfoxide (DMSO) pretreatments.
Methods: HPO-etched mid-coronal dentin surfaces from human molars were air-dried for 30 s and randomly pretreated with 50 %(v/v) ethanolic DMSO for 20 or 60 s. Untreated samples and an isolated wet-bonding group served as controls.
Dent Mater
December 2023
Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland.
Objectives: To examine whether lower dimethyl sulfoxide (DMSO) concentrations would affect long-term bond stability of simplified or multistep water-based adhesives to dry-etched dentin.
Methods: HPO-etched mid-coronal dentin surfaces from human molars were randomly blot- or air-dried for 30 s and pretreated or not with 5 or 50 % (v/v) ethanolic DMSO solutions. Untreated samples served as control.
Dent Mater
November 2023
Department of Restorative Dentistry, School of Dentistry, State University of Ponta Grossa, Rua Carlos Cavalcanti, 4748, Bloco M, Ponta Grossa, Brazil. Electronic address:
Objective: To evaluate the effect of dimethyl sulfoxide (DMSO) on the microtensile bond strength (µTBS) and nanoleakage (NL) of universal adhesives on eroded dentine, immediately and after four years of water storage.
Methods: Sixty-four sound human molars were distributed into 16 groups according to (1) Dentine surface (sound and eroded dentine); (2) dimethyl sulfoxide application (with or without); (3) Application mode (etch-and-rinse or self-etch) and (4) Storage time (immediate and four years). One mild universal adhesive was used (Scotchbond Universal).
J Conserv Dent
November 2021
Department of Conservative Dentistry and Endodontics, Kothiwal Dental College and Research Centre, Moradabad, Uttar Pradesh, India.
Aim: The aim of this study is to evaluate the effect of different bonding techniques ethanol wet bonding and dimethyl sulfoxide (DMSO) wet bonding and a novel collagen cross-linker Quercetin application on the durability of resin-dentin bond and observe the bonded interface under the scanning electron microscope (SEM).
Materials And Methods: For shear bond strength testing, flat coronal dentin surfaces were prepared on 110 extracted human molars. Teeth were randomly divided into five experimental groups according to different surface pretreatments techniques.
Dent Mater
November 2021
Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Turku University Hospital, TYKS, University of Turku, Turku, Finland. Electronic address:
Objective: To determine whether the effect of dentin moisture on the etch-and-rinse bonding may be minimized by dry-bonding protocols utilizing aqueous or ethanolic dimethyl sulfoxide (DMSO) pretreatments.
Methods: HPO-etched mid-coronal dentin surfaces from human molars were randomly blot- or air-dried for 30 s and pretreated with DMSO/HO or DMSO/EtOH solutions. Untreated samples served as control.