98%
921
2 minutes
20
Background: Eukaryotic genomes are partitioned into euchromatic and heterochromatic domains to regulate gene expression and other fundamental cellular processes. However, chromatin is dynamic during growth and development and must be properly re-established after its decondensation. Small interfering RNAs (siRNAs) promote heterochromatin formation, but little is known about how chromatin regulates siRNA expression.
Results: We demonstrate that thousands of transposable elements (TEs) produce exceptionally high levels of siRNAs in Arabidopsis thaliana embryos. TEs generate siRNAs throughout embryogenesis according to two distinct patterns depending on whether they are located in euchromatic or heterochromatic regions of the genome. siRNA precursors are transcribed in embryos, and siRNAs are required to direct the re-establishment of DNA methylation on TEs from which they are derived in the new generation. Decondensed chromatin also permits the production of 24-nt siRNAs from heterochromatic TEs during post-embryogenesis, and siRNA production from bipartite-classified TEs is controlled by their chromatin states.
Conclusions: Decondensation of heterochromatin in response to developmental, and perhaps environmental, cues promotes the transcription and function of siRNAs in plants. Our results indicate that chromatin-mediated siRNA transcription provides a cell-autonomous homeostatic control mechanism to help reconstitute pre-existing chromatin states during growth and development including those that ensure silencing of TEs in the future germ line.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7499886 | PMC |
http://dx.doi.org/10.1186/s13059-020-02163-4 | DOI Listing |
Nature
September 2025
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME) and tumour-enhanced myelopoiesis in the bone marrow fuels these populations. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression.
View Article and Find Full Text PDFBiochimie
September 2025
Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China. Electronic address:
The nuclear factor of activated T cells 3 (NFATc3) plays a significant role in various cancer-related processes, but its interactions with transcriptional modulators, particularly Promyelocytic Leukemia protein (PML), remain poorly understood. PML, a nuclear scaffold protein, is involved in tumor suppression and transcriptional regulation. This study investigates the interaction between NFATc3 and PML, focusing on the role of SUMOylation and its impact on downstream target genes.
View Article and Find Full Text PDFDev Biol
September 2025
School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway H91 W2TY, Ireland. Electronic address:
The transcription factor Six1 and its co-activator Eya1 play central and varied roles during the development of sensory neurons derived from the cranial placodes in vertebrates. Previous studies suggested that these proteins promote both the maintenance of proliferative neuronal progenitors and neuronal differentiation. Context-specific interactions of Six1 and/or Eya1 with different cofactors are likely to contribute to the activation of distinct target genes during different stages of placodal neurogenesis.
View Article and Find Full Text PDFCell Signal
September 2025
School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
Triple-negative breast cancer (TNBC) presents a formidable therapeutic challenge due to its aggressive behavior, molecular heterogeneity, and lack of actionable targets. This study identifies activation-induced cytidine deaminase (AID) as a pivotal epigenetic driver reprogramming the tumor microenvironment (TME) via non-canonical regulation of NOTCH signaling. Mechanistically, AID recruits histone acetyltransferase 1 (HAT1) to form a chromatin-remodeling complex that binds the JAG1 promoter region (-1.
View Article and Find Full Text PDFMol Cell Proteomics
September 2025
Systems Biology Initiative, School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems, UNSW Sydney, Australia. Electronic address:
Phosphorylation of histone lysine demethylases is an important mechanism by which the cell modulates chromatin dynamics to regulate its response to stress. There is evidence that the Saccharomyces cerevisiae H3K36me2/3 demethylase, Rph1p, is an integrator of many signalling events. However, the regulatory function of most Rph1p phosphosites in stress response pathways remains unknown.
View Article and Find Full Text PDF