Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Checkpoint inhibitors have revolutionized cancer therapy and validated immunotherapy as an approach. Unfortunately, responses are seen in a minority of patients. Our objective is to use engineered adenoviruses designed to increase lymphocyte trafficking and cytokine production at the tumor, to assess if they increase the response rate to checkpoint inhibition, as these features have been regarded as predictive for the responses. When Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (an oncolytic adenovirus coding for TNFa and IL-2, also known as TILT-123) and checkpoint inhibitors were used together in fresh urological tumor histocultures, a significant shift toward immune activity (not only tumor necrosis alpha and interleukin-2 but also interferon gamma and granzyme B) and increased T-cell trafficking signals (CXCL10) was observed. , our viruses enabled an anti-PD-L1 (a checkpoint inhibitor) delivering complete responses in all the treated animals (hazard ratios versus anti-PD-L1 alone 0.057 [0.007; 0.451] or virotherapy alone 0.067 [0.011; 0.415]). To conclude, when an engineered oncolytic adenovirus was utilized to modify the tumor microenvironment towards what meta-analyses have pointed as predictive markers for checkpoint inhibitory therapy, the response to them increased synergistically. Of note, key findings were confirmed in fresh patient-derived tumor explants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458667PMC
http://dx.doi.org/10.1080/2162402X.2020.1761229DOI Listing

Publication Analysis

Top Keywords

oncolytic adenovirus
12
tumor microenvironment
8
engineered oncolytic
8
checkpoint inhibitors
8
tumor
6
checkpoint
5
microenvironment remodeling
4
remodeling engineered
4
adenovirus improved
4
improved outcome
4

Similar Publications

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF

Blockade of metastasis by targeting circulating tumor cells with platelet encapsuled oncolytic adenovirus.

Biomaterials

September 2025

Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, 610041, PR China. Electronic address:

Host immune elimination largely limits the application of oncolytic viruses in clinics. Here, we rationally design a bioactive platelet-based oncolytic adenovirus delivery system. Upon loading adenoviruses, platelets are transformed to a pro-endocytosis status, which facilitates their internalization by circulating tumor cells (CTCs).

View Article and Find Full Text PDF

IFNα2b in combination with oncolytic adenovirus enhances antitumor activity against melanoma.

Int Immunopharmacol

September 2025

The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China. Electronic address:

Melanoma is an aggressive malignancy originating from melanocytes, marked by its high metastatic potential, severe malignancy, and poor prognosis. The primary clinical approach involves surgical resection, complemented by adjuvant therapies such as radiotherapy, chemotherapy, targeted therapies, and immunotherapies. In recent years, high-dose IFNα2b has emerged as a pivotal adjuvant therapy following surgery.

View Article and Find Full Text PDF

Exploiting viral infection/vaccination to focus high-affinity T cell populations into tumors using oncolytic viro-immunotherapy.

Mol Ther

August 2025

Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA; Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, School of Immunology and Microbial Sciences, King's College London, London, UK. Electroni

Immune tolerance restricts the number of T cells with significant affinity for self-tumor-associated antigens (TAAs), thereby limiting successful cancer immunotherapy through an inability to generate populations of high-affinity anti-tumor T cells. In contrast, viral infection/vaccination primes and expands high-affinity effector and memory T cells against viral antigens. We show here that it is possible to exploit population-wide preexisting, anti-viral memory recall responses against SARS-CoV-2 antigens to focus a high-affinity, immunodominant T cell response into tumors by oncolytic virus (OV)-mediated or chimeric antigen receptor (CAR)-mediated delivery of viral antigens that are not themselves related to TAAs.

View Article and Find Full Text PDF

Among solid pediatric tumors, brain tumors are the leading cause of cancer-related mortality. While survival rates have improved for certain pediatric brain tumor subtypes, the overall prognosis remains poor. Consequently, there is an urgent need for novel therapies that are not only effective but also less toxic.

View Article and Find Full Text PDF