98%
921
2 minutes
20
Photosynthetic microorganisms are key players in aquatic ecosystems with strong potential for bioenergy production, yet their systematic selection at the single-cell level for improved productivity or stress resilience ("phenotyping") has remained largely inaccessible. To facilitate the phenotyping of microalgae and cyanobacteria, we developed "PhenoChip," a platform for the multiparametric photophysiological characterization and selection of unicellular phenotypes under user-controlled physicochemical conditions. We used PhenoChip to expose single cells of the coral symbiont to thermal and chemical treatments and monitor single-cell photophysiology via chlorophyll fluorometry. This revealed strain-specific thermal sensitivity thresholds and distinct pH optima for photosynthetic performance, and permitted the identification of single cells with elevated resilience toward rising temperature. Optical expulsion technology was used to collect single cells from PhenoChip, and their propagation revealed indications of transgenerational preservation of photosynthetic phenotypes. PhenoChip represents a versatile platform for the phenotyping of photosynthetic unicells relevant to biotechnology, ecotoxicology, and assisted evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467707 | PMC |
http://dx.doi.org/10.1126/sciadv.abb2754 | DOI Listing |
Genome Biol
September 2025
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA.
Vascular sites have distinct susceptibility to atherosclerosis and aneurysm, yet the epigenomic and transcriptomic underpinning of vascular site-specific disease risk is largely unknown. Here, we performed single-cell chromatin accessibility (scATACseq) and gene expression profiling (scRNAseq) of mouse vascular tissue from three vascular sites. Through interrogation of epigenomic enhancers and gene regulatory networks, we discovered key regulatory enhancers to not only be cell type, but vascular site-specific.
View Article and Find Full Text PDFNat Neurosci
September 2025
Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany.
Grid cells, with their periodic firing fields, are fundamental units in neural networks that perform path integration. It is widely assumed that grid cells encode movement in a single, global reference frame. In this study, by recording grid cell activity in mice performing a self-motion-based navigation task, we discovered that grid cells did not have a stable grid pattern during the task.
View Article and Find Full Text PDFCell Mol Immunol
September 2025
Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Gua
Communication between group 3 innate lymphoid cells (ILC3) and other immune cells, as well as intestinal epithelial cells, is pivotal in regulating intestinal inflammation. This study, for the first time, underscores the importance of crosstalk between intestinal endothelial cells (ECs) and ILC3. Our single-cell transcriptome analysis combined with protein expression detection revealed that ECs significantly increased the population of interleukin (IL)-22 ILC3 through interactions mediated by endothelin-1 (ET-1) and its receptor endothelin A receptor (EDNRA).
View Article and Find Full Text PDFNature
September 2025
Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.
View Article and Find Full Text PDF