Transcriptome Analysis of Early Defenses in Rice against Fusarium fujikuroi.

Rice (N Y)

Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei City, 10617, Taiwan.

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Bakanae is a seedborne disease caused by Fusarium fujikuroi. Rice seedlings emerging from infected seeds can show diverse symptoms such as elongated and slender stem and leaves, pale coloring, a large leaf angle, stunted growth and even death. Little is known about rice defense mechanisms at early stages of disease development.

Results: This study focused on investigating early defenses against F. fujikuroi in a susceptible cultivar, Zerawchanica karatals (ZK), and a resistant cultivar, Tainung 67 (TNG67). Quantitative PCR revealed that F. fujikuroi colonizes the root and stem but not leaf tissues. Illumina sequencing was conducted to analyze the stem transcriptomes of F. fujikuroi-inoculated and mock-inoculated ZK and TNG67 plants collected at 7 days post inoculation (dpi). More differentially expressed genes (DEGs) were identified in ZK (n = 169) than TNG67 (n = 118), and gene ontology terms related to transcription factor activity and phosphorylation were specifically enriched in ZK DEGs. Among the complex phytohormone biosynthesis and signaling pathways, only DEGs involved in the jasmonic acid (JA) signaling pathway were identified. Fourteen DEGs encoding pattern-recognition receptors, transcription factors, and JA signaling pathway components were validated by performing quantitative reverse transcription PCR analysis of individual plants. Significant repression of jasmonate ZIM-domain (JAZ) genes (OsJAZ9, OsJAZ10, and OsJAZ13) at 3 dpi and 7 dpi in both cultivars, indicated the activation of JA signaling during early interactions between rice and F. fujikuroi. Differential expression was not detected for salicylic acid marker genes encoding phenylalanine ammonia-lyase 1 and non-expressor of pathogenesis-related genes 1. Moreover, while MeJA did not affect the viability of F. fujikuroi, MeJA treatment of rice seeds (prior to or after inoculation) alleviated and delayed bakanae disease development in susceptible ZK.

Conclusions: Different from previous transcriptome studies, which analyzed the leaves of infected plants, this study provides insights into defense-related gene expression patterns in F. fujikuroi-colonized rice stem tissues. Twelve out of the 14 selected DEGs were for the first time shown to be associated with disease resistance, and JA-mediated resistance was identified as a crucial component of rice defense against F. fujikuroi. Detailed mechanisms underlying the JA-mediated bakanae resistance and the novel defense-related DEGs are worthy of further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483690PMC
http://dx.doi.org/10.1186/s12284-020-00426-zDOI Listing

Publication Analysis

Top Keywords

early defenses
8
fusarium fujikuroi
8
rice defense
8
signaling pathway
8
rice
7
fujikuroi
7
degs
6
transcriptome analysis
4
early
4
analysis early
4

Similar Publications

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

Pregnancy demands dynamic immune adaptations to support implantation, fetal growth, and labor while maintaining maternal-fetal tolerance. The immune profile shifts from pro-inflammatory during implantation to anti-inflammatory in mid-pregnancy, reverting to inflammation at labor onset. Key immune cells like NK cells, macrophages, dendritic cells, and T cells dominate the decidua, guiding successful placental development.

View Article and Find Full Text PDF

Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.

View Article and Find Full Text PDF

Plant roots are exposed to various organisms that significantly impact plant productivity. Plant-parasitic nematodes (PPNs) such as Meloidogyne spp. and Pratylenchus spp.

View Article and Find Full Text PDF

Ferrihydrite level in paddy soil affects inorganic arsenic species in rice grains.

Environ Sci Process Impacts

September 2025

Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.

Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.

View Article and Find Full Text PDF