98%
921
2 minutes
20
Introduction: High altitude (HA) exposure leads to cognitive impairment while the underlying mechanism is still unclear. Brain functional network is crucial for advanced functions, and its alteration is implicated in cognitive decline in multiple diseases. The aim of current study was to investigate the topological changes in HA-exposed brain functional network.
Methods: Based on Shaanxi-Tibet immigrant cohort, neuropsychological tests and resting-state functional MRI were applied to evaluate the participants' cognitive function and functional connection (FC) changes, respectively. GRETNA toolbox was used to construct the brain functional network. The gray matter was parcellated into 116 anatomically defined regions according to Automated Anatomical Labeling atlas. Subsequently, the mean time series for each of the 116 regions were extracted and computed for Pearson's correlation coefficients. The relation matrix was further processed and seen as brain functional network. Correlation between functional network changes and neuropsychological results was also examined.
Results: The cognitive performance was impaired by HA exposure as indicated by neuropsychological test. HA exposure led to alterations of degree centrality and nodal efficiency in multiple brain regions. Moreover, two subnetworks were extracted in which the FCs significantly decreased after exposure. In addition, the alterations in FCs within above two subnetworks were significantly correlated with changes of memory and reaction time.
Conclusions: Our results suggest that HA exposure modulates the topological property of functional network and FCs of some important regions, which may impair the attention, perception, memory, motion ignition, and modulation processes, finally decreasing cognitive performance in neuropsychological tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559604 | PMC |
http://dx.doi.org/10.1002/brb3.1656 | DOI Listing |
Genome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDFBMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDFMikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFEnviron Manage
September 2025
TEMSUS Research Group, Catholic University of Ávila, Ávila, Spain.
Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.
View Article and Find Full Text PDF