Impact of U.S. Oil and Natural Gas Emission Increases on Surface Ozone Is Most Pronounced in the Central United States.

Environ Sci Technol

Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80305, United States.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Observations of volatile organic compounds (VOCs) from a surface sampling network and simulation results from the EMAC (ECHAM5/MESSy for Atmospheric Chemistry) model were analyzed to assess the impact of increased emissions of VOCs and nitrogen oxides from U.S. oil and natural gas (O&NG) sources on air quality. In the first step, the VOC observations were used to optimize the magnitude and distribution of atmospheric ethane and higher-alkane VOC emissions in the model inventory for the base year 2009. Observation-based increases of the emissions of VOCs and NO stemming from U.S. oil and natural gas (O&NG) sources during 2009-2014 were then added to the model, and a set of sensitivity runs was conducted for assessing the influence of the increased emissions on summer surface ozone levels. For the year 2014, the added O&NG emissions are predicted to affect surface ozone across a large geographical scale in the United States. These emissions are responsible for an increased number of days when the averaged 8-h ozone values exceed 70 ppb, with the highest sensitivity being in the central and midwestern United States, where most of the O&NG growth has occurred. These findings demonstrate that O&NG emissions significantly affect the air quality across most of the United States, can regionally offset reductions of ozone precursor emissions made in other sectors, and can have a determining influence on a region's ability to meet National Ambient Air Quality Standard (NAAQS) obligations for ozone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547866PMC
http://dx.doi.org/10.1021/acs.est.9b06983DOI Listing

Publication Analysis

Top Keywords

united states
16
oil natural
12
natural gas
12
surface ozone
12
air quality
12
emissions
8
increased emissions
8
emissions vocs
8
gas o&ng
8
o&ng sources
8

Similar Publications

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Complexity and Health Care Utilization in Infant ESKD.

Kidney360

September 2025

Department of Pediatrics, Division of Pediatric Nephrology, Baylor College of Medicine, Houston, TX, United States.

Background: Dialysis in neonates with ESKD is often associated with multiple comorbidities and the need for more intensified dialysis regimens. With recent advances in prenatal interventions and infant specific KRT, survival of neonates with ESKD has improved over the last decade. Little is known however about the impact on the health care system of improved survival in this population.

View Article and Find Full Text PDF

Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.

Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.

View Article and Find Full Text PDF

Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.

View Article and Find Full Text PDF