98%
921
2 minutes
20
Plants are challenged incessantly by several biotic and abiotic stresses during their entire growth period. As with other biotic stress factors, insect pests have also posed serious concerns related to yield losses due to which agricultural productivity is at stake. In plants, trait modification for crop improvement was initiated with breeding approaches followed by genetic engineering. However, stringent regulatory policies for risk assessment and lack of social acceptance for genetically modified crops worldwide have incited researchers toward alternate strategies. Genome engineering or genome editing has emerged as a new breeding technique with the ability to edit the genomes of plants, animals, microbes, and human beings. Several gene editing strategies are being executed with continuous emergence of variants. The scientific community has unraveled the utility of various editing tools from endonucleases to CRISPR/Cas in several aspects related to plant growth, development, and mitigation of stresses. The categorical focus on the development of tools and techniques including designing of binary vectors to facilitate ease in genome engineering are being pursued. Through this Review, we embark upon the conglomeration of various genome editing strategies that can be and are being used to design insect pest resistance in plants. Case studies and novel crop-based approaches that reiterate the successful use of these tools in insects as well as in plants are highlighted. Further, the Review also provides implications for the requirement of a specific regulatory framework and risk assessment of the edited crops. Genome editing toward insect pest management is here to stay, provided uncompromising efforts are made toward the identification of amiable target genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7450494 | PMC |
http://dx.doi.org/10.1021/acsomega.0c01435 | DOI Listing |
Biotechnol J
September 2025
Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
CRISPR technologies are rapidly transforming agriculture by enabling precise and programmable modifications across a wide range of organisms. This review provides an overview of CRISPR applications in crops, livestock, aquaculture, and microbial systems, highlighting key advances in sustainable agriculture. In crops, CRISPR has accelerated the improvement of traits such as drought tolerance, nutrient efficiency, and pathogen resistance.
View Article and Find Full Text PDFChembiochem
September 2025
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str. 5/2, 220084, Minsk, Belarus.
The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov
As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.
View Article and Find Full Text PDFStem Cell Rev Rep
September 2025
Department of Medical Genetics and Prenatal Diagnostics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
Expression génétique microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, Paris 75005, France.
Targeted gene editing can be achieved using CRISPR-Cas9-assisted recombineering. However, high-efficiency editing requires careful optimization for each locus to be modified, which can be tedious and time-consuming. In this work, we developed a simple, fast and cheap method: Engineered Assembly of SYnthetic operons for targeted editing (EASY-edit) in Escherichia coli.
View Article and Find Full Text PDF