Uncertainty analysis of the performance of a management system for achieving phosphorus load reduction to surface waters.

J Environ Manage

Western University, N6A 3K7, London, Ontario, Canada; University of Saskatchewan, S7N 5A2, Saskatoon, Saskatchewan, Canada. Electronic address:

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recent re-eutrophication of Lake Erie suggests an inadequate phosphorus management system that results in excessive loads to the lake. In response, governments in Canada and the U.S. have issued a new policy objective: 40% reductions in total phosphorus (TP) and dissolved reactive phosphorus (DRP) loads relative to 2008. The International Organization for Standardization (ISO) 31000 is a risk management standard. One of its analytical tools is the ISO 31010:2009 Bowtie Risk Analysis Tool, a tool that structures the cause-effect-impact pathway of risk but lacks the ability to capture the probability of reducing risk associated with different management systems. Here, we combined the Bowtie Risk Analysis Tool with a Bayesian belief network model to analyze the probability of different agricultural management systems of best management practices (BMPs) to achieve the 40% reductions in TP and DRP loads using different adoption rates. The commonly used soil conservation BMPs (e.g., reduced tillage) have a low probability of reducing TP and DRP to achieve the policy objective; while it can achieve the TP load reduction objective at increased adoptions rates >40%, it does not achieve the DRP load reduction objective, and in fact has the unintended consequence of increasing DRP loads. If decision makers continue to rely on soil conservation BMPs, the trade-offs between meeting objectives of different forms of phosphorus will require deciding whether the management priority is to achieve 40% load reduction objectives or to prevent further increases in DRP loads, the identified culprit causing the repeated algal blooms. In contrast, TP- and DRP-effective BMPS had higher probabilities of achieving the policy objective, especially at increased adoption rates >20%. The integration of Bayesian belief networks with the ISO risk management standard allows decision makers to determine the most probable outcomes of their management decisions, and to track and prepare for less probable outcomes, thereby decreasing the risk of failing to achieve policy objectives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111217DOI Listing

Publication Analysis

Top Keywords

load reduction
16
drp loads
16
policy objective
12
management
9
management system
8
40% reductions
8
risk management
8
management standard
8
bowtie risk
8
risk analysis
8

Similar Publications

Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.

View Article and Find Full Text PDF

Crowding can result in greater disease transmission, yet crowded hosts may also remove infectious propagules from the environment, thereby lowering the encounter rate and infectious dose received by conspecifics. We combined experimental and modelling work to examine the impact of crowding of butterfly larvae on the per-capita risk of infection by a protozoan that is transmitted via the larval food plant, and the resulting infection load in adult butterflies. We reared larvae at different densities and exposed them to low and high doses of parasites.

View Article and Find Full Text PDF

Background: Fel d 1, the primary allergen produced by cats, is a glycoprotein found mainly in their salivary and sebaceous glands. Due to its small size and stability, it easily becomes airborne and adheres to surfaces, posing a persistent problem for allergic individuals.

Methods: This article reviews innovative strategies aimed at reducing Fel d 1 expression and exposure and mitigating its allergic effects on humans.

View Article and Find Full Text PDF

The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness of intravenous laser irradiation of blood in reducing viral load and increasing LT-CD4+ and LT-CD8+ in people living with HIV/AIDS.

Method: Randomized, controlled, parallel, single-blind clinical trial. Twenty-eight participants were allocated to the intervention (ILIB n = 15) and control (CTRL n = 13) groups.

View Article and Find Full Text PDF