The Respective Roles of CYP3A4 and CYP2D6 in the Metabolism of Pimozide to Established and Novel Metabolites.

Drug Metab Dispos

Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Kansas City, Kansas City, Missouri.

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pimozide is a dopamine receptor antagonist indicated for the treatment of Tourette syndrome. Prior in vitro studies characterized dealkylation of pimozide to 1,3-dihydro-1-(4-piperidinyl)-2H-benzimidazol-2-one (DHPBI) via CYP3A4 and, to a lesser extent, CYP1A2 as the only notable routes of pimozide biotransformation. However, drug-drug interactions between pimozide and CYP2D6 inhibitors and genotype-dependent effects have since been observed. To reconcile these incongruities between the prior in vitro and in vivo studies, we characterized two novel pimozide metabolites: 5-hydroxypimozide and 6-hydroxypimozide. Notably, 5-hydroxypimozide was the major metabolite produced by recombinant CYP2D6 (K ∼82 nM, ∼0.78 pmol/min per picomoles), and DHPBI was the major metabolite produced by recombinant CYP3A4 (apparent K ∼1300 nM, ∼2.6 pmol/min per picomoles). Kinetics in pooled human liver microsomes (HLMs) for the 5-hydroxylation (K ∼2200 nM, ∼59 pmol/min per milligram) and dealkylation (K ∼3900 nM, ∼600 pmol/min per milligram) reactions were also determined. Collectively, formation of DHPBI, 5-hydroxypimozide, and 6-hydroxypimozide accounted for 90% of pimozide depleted in incubations of NADPH-supplemented pooled HLMs. Studies conducted in HLMs isolated from individual donors with specific cytochrome P450 isoform protein abundances determined via mass spectrometry revealed that 5-hydroxypimozide ( = 0.94) and 6-hydroxypimozide ( = 0.86) formation rates were correlated with CYP2D6 abundance, whereas the DHPBI formation rate ( = 0.98) was correlated with CYP3A4 abundance. Furthermore, the HLMs differed with respect to their capacity to form 5-hydroxypimozide relative to DHPBI. Collectively, these data confirm a role for CYP2D6 in pimozide clearance via 5-hydroxylation and provide an explanation for a lack of involvement when only DHPBI formation was monitored in prior in vitro studies. SIGNIFICANCE STATEMENT: Current genotype-guided dosing information in the pimozide label is discordant with available knowledge regarding the primary biotransformation pathways. Herein, we characterize the CYP2D6-dependent biotransformation of pimozide to previously unidentified metabolites. In human liver microsomes, formation rates for the novel metabolites and a previously identified metabolite were determined to be a function of CYP2D6 and CYP3A4 content, respectively. These findings provide a mechanistic basis for observations of genotype-dependent pimozide clearance in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569309PMC
http://dx.doi.org/10.1124/dmd.120.000188DOI Listing

Publication Analysis

Top Keywords

prior vitro
12
pimozide
11
novel metabolites
8
vitro studies
8
studies characterized
8
5-hydroxypimozide 6-hydroxypimozide
8
major metabolite
8
metabolite produced
8
produced recombinant
8
pmol/min picomoles
8

Similar Publications

Platelet protease-activated receptor 4 genotype and response to aspirin in pregnancy.

Blood Vessel Thromb Hemost

August 2025

Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.

The platelet protease-activated receptor 4 (PAR4) threonine 120 (Thr120) allele is an activating allele associated with reduced aspirin response in vitro. Aspirin is recommended in high-risk pregnancies to prevent preeclampsia and preterm birth. We evaluated the impact of PAR4 genotype on aspirin response in pregnancy, as measured by platelet function assay 100 (PFA-100) epinephrine closure time, and perinatal outcomes.

View Article and Find Full Text PDF

Recent studies suggested that treating sperm with R848, a ligand for the X-linked Toll-like receptors 7 and 8 (TLR7/8) in mice, goats, and cattle, could selectively reduce the motility of X chromosome bearing sperm (X-sperm). This reduction enables the separation of X- and Y-sperm and thereby sex selection. However, through three species and multiple methods, our results challenged prior published data.

View Article and Find Full Text PDF

Despite the clinical success of redirected T cells in the setting of cancer adoptive cell immunotherapy, patients may exhibit resistance to treatment, resulting in uncontrolled disease and relapses. This phenomenon partly relies on impaired -produced T cell metabolic fitness, including a decreased respiratory reserve, as well as a greater sensitivity to tumor-mediated metabolic stress. To improve the respiratory capacity of cultured T cells, we sought to target the nicotinamide adenine dinucleotide/sirtuine-1/reactive oxygen species (ROS) axis through supplementation of culture medium with resveratrol.

View Article and Find Full Text PDF

GLP-1R activation restores Gas6-driven efferocytosis in senescent foamy macrophages to promote neural repair.

Redox Biol

September 2025

Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Medical School of Nantong University, Nantong, Jiangsu, 226000, China; Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu, 226000, China. Elec

Spinal cord injury (SCI) is a devastating condition characterized by the accumulation of myelin debris (MD), persistent neuroinflammation, and impaired neural regeneration. Although macrophages are pivotal for MD clearance, the impact of excessive MD phagocytosis on macrophage phenotype and function remains poorly understood. Building upon our prior evidence that exendin-4 (Ex-4), a glucagon-like peptide-1 receptor (GLP-1R) agonist, mitigates microglia-driven neuroinflammation post-SCI, this study elucidates the therapeutic efficacy and underlying mechanisms of Ex-4 in alleviating macrophage senescence, restoring efferocytotic capacity, and facilitating neural repair.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system, often resulting in partial or complete loss of sensory and motor functions. Ferroptosis, a lipid peroxidation-driven apoptotic process triggered by iron overload, has emerged as a novel form of programmed cell death and a focal point in post-SCI cell death research. Exosomes (Exo), as delivery vehicles, exhibit multiple advantages, including superior encapsulation capacity, high targeting efficiency, and enhanced blood-brain barrier penetration to reach the central nervous system.

View Article and Find Full Text PDF