98%
921
2 minutes
20
Viticulture is one of the horticultural systems in which antifungal treatments can be extremely frequent, with substantial economic and environmental costs. New products, such as biofungicides, resistance inducers and biostimulants, may represent alternative crop protection strategies respectful of the environmental sustainability and food safety. Here, the main purpose was to evaluate the systemic molecular modifications induced by biocontrol products as laminarin, resistance inducers (i.e., fosetyl-Al and potassium phosphonate), electrolyzed water and a standard chemical fungicide (i.e., metiram), on the transcriptomic profile of 'Nebbiolo' grape berries at harvest. In addition to a validation of the sequencing data through real-time polymerase chain reaction (PCR), for the first-time the expression of some candidate genes in different cell-types of berry skin (i.e., epidermal and hypodermal layers) was evaluated using the laser microdissection approach. Results showed that several considered antifungal treatments do not strongly affect the berry transcriptome profile at the end of season. Although some treatments do not activate long lasting molecular defense priming features in berry, some compounds appear to be more active in long-term responses. In addition, genes differentially expressed in the two-cell type populations forming the berry skin were found, suggesting a different function for the two-cell type populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7504522 | PMC |
http://dx.doi.org/10.3390/ijms21176067 | DOI Listing |
Phytopathology
September 2025
308 Plant protection collegenorthwest a&F universityyangling, shaanxi, China, 712100;
is a significant phytopathogen in both pre- and postharvest stages of fruit development and storage. The development of environmentally-friendly biological control agents has attracted increasing research interest. In this study, we characterized a fungal strain ( LQ) that strongly inhibits .
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Institute of Nutrition and Health, Qingdao University, Qingdao, People's Republic of China.
Ellagic acid (EA), a bioactive polyphenol abundant in pomegranate and berries, exhibits potential in metabolic regulation. This study investigates EA's anti-obesity mechanisms, focusing on its effects on gut microbiota and transcriptional regulation in adipose tissue. After a 9-week high-fat diet feeding, mice were divided into groups and treated with low-dose EA (10 mg/kg/day), high-dose EA (30 mg/kg/day), or urolithin A (20 mg/kg/day) for 7 weeks, with healthy and obese controls included.
View Article and Find Full Text PDFProteomics
September 2025
Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
Honey bees (Apis mellifera) are vital pollinators in fruit-producing agroecosystems like highbush blueberry (HBB) and cranberry (CRA). However, their health is threatened by multiple interacting stressors, including pesticides, pathogens, and nutritional changes. We tested the hypothesis that distinct agricultural ecosystems-with different combinations of agrochemical exposure, pathogen loads, and floral resources-elicit ecosystem-specific, tissue-level molecular responses in honey bees.
View Article and Find Full Text PDFPlant Genome
September 2025
College of Agronomy, Hunan Agricultural University, Changsha, China.
Maize (Zea mays L.) is a globally significant crop, with its kernel sugar content playing a crucial role in determining nutritional quality and industrial applications. This study aimed to elucidate the genetic mechanisms underlying sugar-related traits in maize kernels through genome-wide association studies.
View Article and Find Full Text PDFPlant Commun
September 2025
Centro de Genómica y Bioinformática, Universidad Mayor, 8580745 Santiago, Chile; Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile; Agencia Nacional de Investigación y Desarrollo-Mille
Tomato (Solanum lycopersicum) is a globally important crop, yet the gene regulatory networks (GRNs) controlling gene expression remain poorly understood. In this study, we constructed GRNs for roots, leaves, flowers, fruits, and seeds by inferring transcription factor (TF)-target interactions from over 10,000 RNA-seq libraries using the GENIE3 algorithm. We refined these networks with gene co-expression data and computational predictions of TF binding sites.
View Article and Find Full Text PDF