Zbtb7b suppresses aseptic inflammation by regulating mA modification of IL6 mRNA.

Biochem Biophys Res Commun

Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, 7 Zhichunan Road, Yantai, 264002, Shandong, China. Electronic address:

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiotherapy is a crucial approach for treating tumors. However, radiation-induced aseptic inflammation is a common complication. Radiation pneumonitis is the acute manifestation of radiation-induced lung disease, and interleukin 6 (IL-6) is a major proinflammatory cytokine involved in radiation-induced lung injury. Here we found that silencing Zinc finger and BTB domain-containing protein 7B (Zbtb7b) resulted in higher radiation-induced IL-6 production in THP1 cells and BEAS-2B lung bronchial epithelial cells. Mechanistically, Zbtb7b recruited RNA demethylase ALKBH5 to IL6 mRNA. Subsequentially, it demethylated N-methyladenosine (mA) modification of IL6 mRNA and inhibited its nuclear export. Thus, Zbtb2b epigenetically suppresses irradiation-induced IL-6 production in the lungs via inhibiting the mA modification and nucleocytoplasmic transport of IL6 mRNA, serving as a new potential predictive marker and therapeutic target in radiation pneumonitis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.07.011DOI Listing

Publication Analysis

Top Keywords

il6 mrna
16
aseptic inflammation
8
modification il6
8
radiation pneumonitis
8
radiation-induced lung
8
il-6 production
8
zbtb7b suppresses
4
suppresses aseptic
4
inflammation regulating
4
regulating modification
4

Similar Publications

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

This study aimed to investigate the therapeutic effects of Sini Decoction on a murine model of peripheral arterial disease (PAD) and to explore its potential mechanisms of action related to mitochondrial autophagy and M1 macrophage polarization. A total of 36 specific-pathogen-free Kunming mice were used to establish a PAD model and were randomly assigned into four groups: the experimental group (EG, administered Sini Decoction via gavage), the control group (CG, administered rapamycin via gavage), the model group (MG, administered 0.9% sodium chloride solution via gavage), and the normal group (NG, administered 0.

View Article and Find Full Text PDF

Objective: Sepsis is a common and life-threatening syndrome in intensive care units, frequently accompanied by myocardial dysfunction, which significantly worsens patient outcomes. S100A12, a calcium-binding protein associated with inflammation, is upregulated in various inflammatory conditions. However, its role in sepsis and related cardiac injury remains unclear.

View Article and Find Full Text PDF

Objectives: This study investigated the cardioprotective effects of stachydrine (STA) in lipopolysaccharide (LPS)-induced septic mice and H9c2 cardiomyocytes, focusing on its anti-apoptotic, anti-inflammatory, and anti-ferroptotic actions.

Methods: We established an LPS-induced sepsis model in mice and an LPS-stimulated H9c2 cardiomyocyte model in vitro.

Results: STA markedly reduced LPS-induced myocardial apoptosis, as demonstrated by decreased TUNEL-positive cells, and attenuated the elevation of serum cardiac injury markers, including creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), brain natriuretic peptide (BNP), cardiac troponin I (cTnI), and cardiac troponin T (cTnT) levels.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF