98%
921
2 minutes
20
Background: Hematopoietic stem cells (HSCs) have the ability to differentiate into all subsets of blood cells and self-renew. Large tumor suppressor 1 (LATS1) and large tumor suppressor 2 (LATS2) kinases are essential for cell cycle regulation, organism fitness, genome integrity, and cancer prevention. Here, we investigated whether Lats1 and Lats2 are critical for the maintenance of the self-renewal and quiescence capacities of HSCs in mice.
Methods: Quantitative reverse transcription-polymerase chain reaction was used to determine the expression levels of Lats1 and Lats2 in subsets of progenitor cells and mature bone marrow cells. A clustered regularly interspaced short palindromic repeats system was used to generate Lats1 or Lats2 knockout mice. Complete blood cell counts were used to compare the absolute number of white blood cells, lymphocytes, monocytes, neutrophils, and platelets between Lats1 or Lats2 heterozygotes and littermates. Flow cytometry was used to assess the size of hematopoietic progenitor cells (HPCs) and HSC pools in Lats1 or Lats2 heterozygotes and littermates. The comparison between the two groups was analyzed using Student's t test.
Results: Lats1 and Lats2 were widely expressed in hematopoietic cells with higher expression levels in primitive hematopoietic cells than in mature cells. Lats1 or Lats2 knockout mice were generated, with the homozygotes showing embryonic lethality. The size of the HPC and HSC pools in Lats1 (HPC: wild-type [WT] vs. heterozygote, 220,426.77 ± 54,384.796 vs. 221,149.4 ± 42,688.29, P = 0.988; HSC: WT vs. heterozygote, 2498.932 ± 347.856 vs. 3249.763 ± 370.412, P = 0.105) or Lats2 (HPC: WT vs. heterozygote, 425,540.52 ± 99,721.86 vs. 467,127.8 ± 89,574.48, P = 0.527; HSC: WT vs. heterozygote, 4760.545 ± 1518.01 vs. 5327.437 ± 873.297, P = 0.502) heterozygotes were not impaired. Moreover, the depletion of Lats1 or Lats2 did not affect the overall survival of the heterozygotes (Lats1: P = 0.654; Lats2: P = 0.152).
Conclusion: These results indicate that a single allele of Lats1 or Lats2 may be sufficient for normal hematopoiesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462215 | PMC |
http://dx.doi.org/10.1097/CM9.0000000000000934 | DOI Listing |
Aging Cell
September 2025
Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA.
The Hippo signaling pathway is a key regulator of cell growth and cell survival, and hyperactivation of the Hippo pathway has been implicated in neurodegenerative diseases such as Huntington's disease. However, the role of Hippo signaling in Alzheimer's disease (AD) remains unclear. We observed that hyperactivation of Hippo signaling occurred in the AD model 5xFAD mice.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605.
The LIM domain protein LIMD1 is a critical regulator of the Hippo signaling pathway, acting to sequester the kinases LATS1/2 to adherens junctions (AJs) in response to mechanical strain. Here, we identify the molecular basis for LIMD1 binding and recruitment of LATS1/2 to AJs. We show that while the LIM domains of LIMD1 are sufficient for AJ localization and binding to LATS1/2, recruitment of LATS1 to AJ requires both the intrinsically disordered region (IDR) in the N-terminus as well as the LIM domains.
View Article and Find Full Text PDFOrthod Craniofac Res
August 2025
School of Dentistry, University of California Los Angeles, Los Angeles, California, USA.
Objective(s): Yes-Associated Protein (YAP) is a critical regulator of cell proliferation and differentiation, having the capacity to convert differentiated cells into somatic stem cells in several contexts. Here we investigate the plasticity of adult mouse dental epithelial cells by testing the effects of ectopic YAP activation in dental epithelial progenitors and differentiated ameloblasts during incisor renewal.
Materials And Methods: Using mice with dental epithelial deletion of Lats1 and Lats2, which encode negative regulators of YAP, we assessed how ectopic YAP activation altered tissue structure, cell proliferation, and differentiation via histological analysis, EdU/BrdU labeling, and immunostaining.
J Med Chem
August 2025
Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States.
The Large Tumor Suppressor Kinases 1 and 2 (LATS1/2) are serine/threonine kinases that play an essential role in Hippo pathway activation and influence multiple physiological events ranging from organ growth to tissue regeneration. As a result, pharmacological inhibition of LATS1/2 represents a promising strategy for therapeutic intervention in multiple indications. Within, we present the discovery of potent and selective inhibitors of the kinases LATS1 and LATS2.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
July 2025
Richard H. Kingery Endowed Collegiate Professor, Schools of Dentistry, Engineering, and Medicine, University of Michigan 1011 North University Avenue, Ann Arbor, MI 48109, United States.
Introduction: Fibroblast growth factor 2 (FGF2) plays a crucial role in regulating the osteogenic differentiation of progenitor cells. However, the process by which this occurs is not yet fully understood. In this study, we aimed to investigate whether FGF2 stimulates the osteogenesis of precursor cells through the yes-associated protein (YAP) and large tumor suppressor kinases 1/2 (LATS1/2).
View Article and Find Full Text PDF