Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Assessing the impact of nanoparticles in living systems implies a proper evaluation of their behaviour at single-cell level. Due to the small size of nanoparticles, their accumulation, transformation and location within single cells is challenging. In this work, the combination of single cell/single particle triple quadrupole inductively coupled plasma mass spectrometry (SC/SP-ICP-TQ-MS) analysis along with X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements has been applied to go deeper into the uptake and biotransformation of tellurium nanoparticles (TeNPs) in two bacterial model organisms, S. aureus and E. coli. The use of SC-ICP-TQ-MS enabled the individual introduction of bacterial cells where tellurium and phosphorous (as constitutive element) were monitored and detected at concentration levels down to femtogram (fg) per cell. S.aureus uptake of TeNPs was 0.5-1.9 fg Te cell and 7-30 fg Te cell in presence of 0.5 and 15 mg Te L of TeNPs, respectively, whereas for E. coli, the amount of Te ranged from 0.08 to 0.88 fg Te cell and from 2 to 36 fg Te cell in presence of 0.5 and 15 mg Te L of TeNPs, respectively. TEM and XRD analysis confirmed the occurrence of TeNPs biotransformation (from nanospheres to nanorods) as the nanoparticles were incorporated into both bacterial strains. Finally, SP-ICP-MS analysis after cell lysis was applied to determine the number of particles/rods per bacteria cell and to perform the dimensional characterization of the rod-shaped TeNPs. The results obtained clearly confirmed high cell-to-cell variability in terms of Te nanorods dimensions and TeNPs uptake. To the best of our knowledge, this is the first time that SC/SP-ICP-TQ-MS along with TEM and XRD analysis have been applied to investigate, quantitatively, nanoparticle uptake in bacterial cells and to estimate the dimensions of biogenic Te nanorods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.06.058DOI Listing

Publication Analysis

Top Keywords

cell
8
uptake biotransformation
8
biotransformation tellurium
8
tellurium nanoparticles
8
bacterial cells
8
cell presence
8
presence 15 mg
8
15 mg tenps
8
tem xrd
8
xrd analysis
8

Similar Publications

An Investigation of Hyperostosis Frontalis Interna in a Modern Anatomical Body Donor Population.

Clin Anat

September 2025

Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.

This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.

View Article and Find Full Text PDF

Mediastinal masses often present acutely as medical emergencies, necessitating prompt and accurate diagnosis. Imaging-guided fine needle aspiration cytology (FNAC) plays a pivotal role in rapidly identifying rare mediastinal tumours and differentiating them from other potential aetiologies, enabling timely intervention. Primary mediastinal germ cell tumours (PMGCTs) constitute approximately 15% of adult mediastinal neoplasms.

View Article and Find Full Text PDF

Systematic analyses uncover plasma proteins linked to incident cardiovascular diseases.

Protein Cell

August 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.

Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.

View Article and Find Full Text PDF