Control of regulatory T cell homeostasis.

Curr Opin Immunol

Laboratory of Immune System Biology, Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. Electronic address:

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CD4 Foxp3 T Regulatory (Treg) cells play a critical role in the homeostasis and maintenance of the immune system. The understanding of different aspects of Treg cells biology remains an intensively investigated subject as altering their generation, stability, or function by drugs or biologics may have therapeutic value in the treatment of autoimmune and inflammatory diseases as well as cancers. This review will focus on recent studies on the role of cytokines, T Cell Receptor (TCR) and co-stimulatory/co-inhibitory molecules signaling, location and metabolism on the homeostasis and stability of Treg cells. The potential for therapeutic manipulation of each of these factors will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coi.2020.07.001DOI Listing

Publication Analysis

Top Keywords

treg cells
12
control regulatory
4
regulatory cell
4
cell homeostasis
4
homeostasis cd4
4
cd4 foxp3
4
foxp3 regulatory
4
regulatory treg
4
cells play
4
play critical
4

Similar Publications

Introduction: Conventional dendritic cells (cDCs) in the gut express the vitamin A (VA)-converting enzyme retinal dehydrogenase 2 (RALDH2) and produce significant amounts of retinoic acid (RA). RA derived from gut cDCs contributes to the generation of tolerogenic responses by promoting Treg differentiation while inhibiting Th1 and Th17 cell differentiation. In this study, we investigated whether similar RA-mediated immunoregulatory mechanisms operate in the pancreas using an experimental autoimmune pancreatitis (AIP) model.

View Article and Find Full Text PDF

Objectives: Demineralised dentin matrix (DDM) is an effective scaffold material for bone tissue engineering. However, the osteoimmunological mechanism of DDM remains unexplored. Th17/Treg cell balance has been noticed as a crucial factor in bone regeneration.

View Article and Find Full Text PDF

Targeting Tregs in T1DM: bridging heterogeneity, mechanisms, and clinical progress.

Trends Pharmacol Sci

September 2025

Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manch

Regulatory T cells (Tregs) play a pivotal role in maintaining immune tolerance and sustaining immunological homeostasis. Emerging evidence indicates that Treg characteristics and functional alterations can significantly contribute to the pathogenesis of autoimmune diseases including type 1 diabetes mellitus (T1DM). Notably, recent studies have established a positive correlation between diminished numbers of Tregs and the onset of T1DM.

View Article and Find Full Text PDF

The fraction that the elderly represent in the world's population is growing rapidly; numerous alterations that impact all organs and systems, including the immune system, are related to aging. A complex process common in the elderly, known as immunosenescence, is characterized by a decreased ability to respond to vaccination as well as an increased risk of bacterial and viral infections, autoimmune, cardiovascular and neurodegenerative diseases. These processes are associated with alterations in the innate and adaptive immune system and lead to a condition of chronic low-grade inflammation, referred to as inflammaging.

View Article and Find Full Text PDF

Human T-cell leukemia virus type I: modulation of viral gene expression and perturbation of host signaling pathways lead to persistent infection.

Curr Opin Virol

September 2025

Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. Electronic address:

Human T-cell leukemia virus type I (HTLV-1) was the first human pathogenic retrovirus to be discovered. HTLV-1 induces a T-cell malignancy, adult T-cell leukemia-lymphoma (ATL), and inflammatory diseases, such as HTLV-1-associated myelopathy (HAM), HTLV-1 uveitis (HU), and HTLV-1-associated pulmonary disease (HAPD). Importantly, HTLV-1 maintains persistent infection by regulating viral gene expression and disrupting host signaling pathways - activities that are closely linked to its pathogenicity.

View Article and Find Full Text PDF