98%
921
2 minutes
20
Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41591-020-1038-6 | DOI Listing |
Ann Surg Oncol
September 2025
Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, GA, USA.
Soft tissue sarcomas (STS) are a heterogeneous group of rare malignant tumors arising from mesenchymal tissues, with extremity and superficial trunk STS (eSTS) comprising the majority of cases. The management of localized eSTS requires a multidisciplinary approach to optimize oncologic and functional outcomes. This review outlines the natural history, diagnostic workup, and treatment principles for localized eSTS, emphasizing the role of histology-specific considerations in guiding management strategies.
View Article and Find Full Text PDFMol Syst Biol
September 2025
Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.
The complex interplay between circulating metabolites and immune responses, which is pivotal to disease pathophysiology, remains poorly understood and understudied in systematic research. Here, we performed a comprehensive analysis of the immune response and circulating metabolome in two Western European cohorts (534 and 324 healthy individuals) and one from sub-Saharan Africa (323 healthy donors). At the metabolic level, our analysis revealed sex-specific differences in the correlation between phosphatidylcholine and cytokine responses following ex vivo stimulation.
View Article and Find Full Text PDFNat Rev Urol
September 2025
Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
Low-grade non-muscle invasive bladder cancer is a specific category of bladder cancer with a favourable prognosis; however, its management presents several challenges. The risk of stage progression is very low, but approximately half of patients will experience recurrence within the first 5 years after diagnosis. This high propensity for recurrence, coupled with the threat of progression, mandates ongoing surveillance.
View Article and Find Full Text PDFUrol Oncol
September 2025
Nutritional, Genes and Human Disease Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh. Electronic address:
Background: Understanding the mutational landscape is critical for elucidating the molecular mechanisms driving cancer progression. This study aimed to profile somatic mutations in bladder cancer patients (N=7) from Bangladesh to provide insights into the genetic alterations underlying this malignancy.
Methods: We performed targeted sequencing of 50 oncogenes and tumor suppressor genes using the Ion AmpliSeq Cancer Hotspot Panel v2 on tumor and matched blood samples from seven bladder cancer patients.
J Immunother Cancer
September 2025
Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
Background: While highly efficacious for numerous cancers, immune checkpoint inhibitors (ICIs) can cause unpredictable and potentially severe immune-related adverse events (irAEs), underscoring the need to understand irAE biology.
Methods: We used a multidimensional approach incorporating single-cell RNA sequencing, mass cytometry, multiplex cytokine assay, and antinuclear antibody (ANA) profiling to characterize the peripheral immune landscape of patients receiving ICI therapy according to irAE development.
Results: Analysis of 162 patients revealed that individuals who developed clinically significant irAEs exhibited a baseline proinflammatory, autoimmune-like state characterized by a significantly higher abundance of CD57 T and natural killer (NK) T cells, plasmablasts, proliferating and activated CXCR3 lymphocytes, CD8 effector and terminal effector memory T cells, along with reduced NK cells and elevated plasma ANA levels.