98%
921
2 minutes
20
Recently, the focus of Alzheimer's disease (AD) research has shifted from the clinical stage to the preclinical stage. We, therefore, aimed to develop a cognitive composite score that can detect the subtle cognitive differences between the amyloid positive (Aβ+) and negative (Aβ-) status in cognitively normal (CN) participants. A total of 423 CN participants with Aβ positron emission tomography images were recruited. The multiple-indicators multiple-causes model found the latent mean difference between the Aβ+ and Aβ- groups in the domains of verbal memory, visual memory, and executive functions. The multivariate analysis of covariance (MANCOVA) showed that the Aβ+ group performed worse in tests related to the verbal and visual delayed recall, semantic verbal fluency, and inhibition of cognitive inference within the three cognitive domains. The Preclinical Amyloid Sensitive Composite (PASC) model we developed using the result of MANCOVA and the MMSE presented a good fit with the data. The accuracy of the PASC score when applied with age, sex, education, and APOE ε4 for distinguishing between Aβ+ and Aβ- was adequate (AUC = 0.764; 95% CI = 0.667-0.860) in the external validation set (N = 179). We conclude that the PASC can eventually contribute to facilitating more prevention trials in preclinical AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423599 | PMC |
http://dx.doi.org/10.1038/s41598-020-70386-3 | DOI Listing |
Crit Rev Anal Chem
September 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment.
View Article and Find Full Text PDFJ Neurochem
September 2025
Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.
View Article and Find Full Text PDFFASEB J
September 2025
Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
Alzheimer's disease (AD) is influenced by genetic and environmental factors. Previous studies showed that enriched environments improved memory and reduced amyloid plaques in AD mice, but the underlying mechanisms remain unclear. This study investigated the effects and mechanisms of enriched environments on AD pathology and cognitive function in aged APP/PS1 mice.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
September 2025
Stanford Neuroscience Health Center, Stanford University, Palo Alto CA USA.
Background: AR1001 is a phosphodiesterase-5 inhibitor that produces improved cognitive performance and reduces amyloid-β and phosphorylated tau burdens in preclinical models of Alzheimer's disease (AD).
Objectives: To evaluate the safety and efficacy of AR1001 in participants with mild-to-moderate Alzheimer's disease (AD).
Design: Randomized, double-blind, placebo-controlled phase 2 trial conducted at 21 sites in the United States.
Introduction: Plasma glial fibrillary acidic protein (GFAP), a marker of astrocytic activation, has been linked to Alzheimer's disease; however, its prognostic value in cognitively unimpaired (CU) individuals remains unclear.
Methods: We included 949 CU older adults from the A4 preclinical AD trial, and its companion LEARN cohort. Baseline plasma GFAP was measured, and longitudinal associations with cognitive decline, clinical dementia rating (CDR) progression, and imaging biomarkers were assessed over 240 weeks.