98%
921
2 minutes
20
Trehalose-6-phosphate phosphatase (T6PP) catalyzes the dephosphorylation of trehalose 6-phosphate (T6P) to the disaccharide trehalose. The enzyme is not present in mammals but is essential to the viability of multiple lower organisms as trehalose is a critical metabolite, and T6P accumulation is toxic. Hence, T6PP is a target for therapeutics of human pathologies caused by bacteria, fungi, and parasitic nematodes. Here, we report the X-ray crystal structures of T6PP (T6PP) in its form and in complex with the cofactor Mg and the substrate analogue trehalose 6-sulfate (T6S), the product trehalose, or the competitive inhibitor 4--octylphenyl α-d-glucopyranoside 6-sulfate (OGS). OGS replaces the substrate phosphoryl group with a sulfate group and the glucosyl ring distal to the sulfate group with an octylphenyl moiety. The structures of these substrate-analogue and product complexes with T6PP show that specificity is conferred via hydrogen bonds to the glucosyl group proximal to the phosphoryl moiety through Glu123, Lys125, and Glu167, conserved in T6PPs from multiple species. The structure of the first-generation inhibitor OGS shows that it retains the substrate-binding interactions observed for the sulfate group and the proximal glucosyl ring. The OGS octylphenyl moiety binds in a unique manner, indicating that this subsite can tolerate various chemotypes. Together, these findings show that these conserved interactions at the proximal glucosyl ring binding site could provide the basis for the development of broad-spectrum therapeutics, whereas variable interactions at the divergent distal subsite could present an opportunity for the design of potent organism-specific therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251262 | PMC |
http://dx.doi.org/10.1021/acs.biochem.0c00317 | DOI Listing |
Int J Biol Macromol
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, 50603, Malaysia. Electronic address:
This study aimed to characterize, in vitro dissolution, and evaluate the release kinetics of salicylamide in capsule shells made from κ-carrageenan-HPMC. The capsule shell was prepared using the dipping method with CRG: HPMC (1:1, 1:2, 1:3) ratio, supplemented with sorbitol and antifoam silicone emulsion. Characterization was conducted using FTIR, SEM-EDX mapping, AFM, hardness, and swelling degree experiments.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna, Tenerife, Spain.
The 2021-eruption of Tajogaite (La Palma, Canary Islands) was associated with the formation of large amounts of respirable PM aerosols (smaller than 10 μm) that triggered air quality crisis and lockdowns for ∼35,000 persons. This study aims to quantify the contribution of the aerosol formation mechanisms to the volcanic PM concentrations. During the eruption and post-eruption, we monitored trace gases (SO, HF, HCl and NO), and the size distribution and chemical composition of falling-tephra and PM aerosols.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Cytogenetics and Molecular Genetics Lab, Pathology Unit, Medical Division (BARC Hospital), Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai, India.
Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.
View Article and Find Full Text PDFExp Clin Transplant
August 2025
>From the Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czechia; and the Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czechia.
Objectives: Kidney transplant is a life-saving procedure for patients with end-stage renal disease. Success of kidney transplant is highly dependent on maintaining the integrity of the endothelium and its protective layer, the endothelial glycocalyx. Ischemia-reperfusion injury, a common challenge in kidney transplant, can disrupt the endothelial glycocalyx, leading to various post-transplant complications.
View Article and Find Full Text PDFCardiovasc Revasc Med
September 2025
Division of Vascular Surgery, Cardiovascular Center, Tufts Medical Center, Boston, MA, USA; Tufts University School of Medicine, Boston, MA, USA. Electronic address:
Background: protamine sulfate is used to reduce bleeding risk after Carotid Artery Stenting (CAS), but its efficacy in personalized patient settings remains underexplored. This study aims to identify factors associated with greater benefits from protamine sulfate following CAS.
Methods: A retrospective review of Vascular Quality Initiative (VQI) data (2016-2022) identified patients undergoing CAS, divided into Transfemoral CAS (TF-CAS) and Transcarotid artery revascularization (TCAR) groups.