Input-Output Relationship of CA1 Pyramidal Neurons Reveals Intact Homeostatic Mechanisms in a Mouse Model of Fragile X Syndrome.

Cell Rep

Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK; Patrick Wild Centre for Autism Research, University of Edinburgh, Edinburgh, UK; Centre for Brain Development and Repair, InStem, GKVK Camp

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1 mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1 neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1 mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435362PMC
http://dx.doi.org/10.1016/j.celrep.2020.107988DOI Listing

Publication Analysis

Top Keywords

ca1 pyramidal
8
pyramidal neurons
8
fragile syndrome
8
cellular hyperexcitability
8
cellular excitability
8
ais length
8
reduced functional
8
cellular
5
input-output relationship
4
ca1
4

Similar Publications

Excitatory glycine receptors control ventral hippocampus synaptic plasticity and anxiety-related behaviors.

Proc Natl Acad Sci U S A

September 2025

Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.

Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.

View Article and Find Full Text PDF

Cannabidiol (CBD) decreases seizures in patients with severe pediatric-onset epilepsies including Dravet, Lennox-Gastaut, and Tuberous Sclerosis syndromes. However, the effects of CBD on neuronal activity and circuits remain obscure. In the mouse hippocampus, we found that CBD causes a GPR55-independent decrease in CA1 pyramidal neuron firing frequency and a GPR55-dependent reduction in CA3 to CA1 hippocampal activity propagation.

View Article and Find Full Text PDF

The fasciola cinereum (FC) is a small, conserved hippocampal subregion whose function has remained largely unexplored. Anatomically situated between dorsal CA1 and the third ventricle in rodents, the FC receives diverse cortical and subcortical inputs yet is often omitted from hippocampal circuit models. There remains a fundamental knowledge gap regarding the cell types and intrinsic properties of neurons in FC and whether they are distinct from neighboring hippocampal subregions.

View Article and Find Full Text PDF

Reelin Controls the Directional Orientation, Apical Localization and Length of Primary Cilia in Principal Neurons in the Cerebral Cortex.

bioRxiv

August 2025

Department of Molecular, Cellular, and Biomedical Sciences; College of Life Sciences and Agriculture, University of New Hampshire, 46 College Road, Durham, NH 03824.

The primary cilia of pyramidal neurons in inside-out laminated regions orient predominantly toward the pial surface, reflecting reverse soma re-positioning during postnatal development. However, the mechanisms underlying the directional cilia orientation and reverse movement are unknown. Here we show that the primary cilia of pyramidal neurons are localized near the base of the apical dendrites and aligned on the nuclear side opposite to the axon initial segment.

View Article and Find Full Text PDF

Background: Perioperative cognitive disorder (PND) affects up to 31% of surgical patients. Although clinical studies have identified a variety of risk factors, no effective prevention has been developed. From our previous cohort of PND patients, several single-nucleotide polymorphism (SNP) sites on ctnna2 were identified.

View Article and Find Full Text PDF