Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Prospective evidence on the risk of depression in relation to transportation noise exposure and noise annoyance is limited and mixed. We aimed to investigate the associations of long-term exposure to source-specific transportation noise and noise annoyance with incidence of depression in the SAPALDIA (Swiss cohort study on air pollution and lung and heart diseases in adults) cohort. We investigated 4,581 SAPALDIA participants without depression in the year 2001/2002. Corresponding one-year mean road, railway and aircraft day-evening-night noise (Lden) was calculated at the most exposed façade of the participants' residential floors, and transportation noise annoyance was assessed on an 11-point scale. Incident cases of depression were identified in 2010/2011, and comprised participants reporting physician diagnosis, intake of antidepressant medication or having a short form-36 mental health score < 50. We used robust Poisson regressions to estimate the mutually adjusted relative risks (RR) and 95% confidence intervals (CI) of depression, independent of traffic-related air pollution and other potential confounders. Incidence of depression was 11 cases per 1,000 person-years. In single exposure models, we observed positive but in part, statistically non-significant associations (per 10 dB) of road traffic Lden [RR: 1.06 (0.93, 1.22)] and aircraft Lden [RR: 1.19 (0.93, 1.53)], and (per 1-point difference) of noise annoyance [RR: 1.05 (1.02, 1.08)] with depression risk. In multi-exposure model, noise annoyance effect remained unchanged, with weaker effects of road traffic Lden [(RR: 1.02 (0.89, 1.17)] and aircraft Lden [(RR: 1.17 (0.90, 1.50)]. However, there were statistically significant indirect effects of road traffic Lden [(β: 0.02 (0.01, 0.03)] and aircraft Lden [β: 0.01 (0.002, 0.02)] via noise annoyance. There were no associations with railway Lden in the single and multi-exposure models [(RR: 0.88 (0.75, 1.03)]. We made similar findings among 2,885 non-movers, where the effect modification and cumulative risks were more distinct. Noise annoyance effect in non-movers was stronger among the insufficiently active (RR: 1.09; 95%CI: 1.02, 1.17; p = 0.07) and those with daytime sleepiness [RR: 1.07 (1.02, 1.12); p = 0.008]. Cumulative risks of Lden in non-movers showed additive tendencies for the linear cumulative risk [(RR: 1.31 (0.90, 1.91)] and the categorical cumulative risk [(RR: 2.29 (1.02, 5.14)], and remained stable to noise annoyance. Transportation noise level and noise annoyance may jointly and independently influence the risk of depression. Combined long-term exposures to noise level seems to be most detrimental, largely acting via annoyance. The moderation of noise annoyance effect by daytime sleepiness and physical activity further contribute to clarifying the involved mechanisms. More evidence is needed to confirm these findings for effective public health control of depression and noise exposure burden.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.106014DOI Listing

Publication Analysis

Top Keywords

transportation noise
16
noise annoyance
16
incidence depression
8
depression relation
8
relation transportation
8
noise
8
noise exposure
8
exposure noise
8
transportation
4
annoyance
4

Similar Publications

Accurate imputation of missing data is crucial in the Industrial Internet-of-Things (IIoT), where operations are often compromised by noisy samples from harsh environments. Traditional imputation methods struggle with such noise due to their black-box nature or lack of adaptability. To address this issue, we recast data imputation as a distribution alignment challenge, utilizing the flexibility of optimal transport (OT) to handle noisy samples.

View Article and Find Full Text PDF

Transportation Noise and Cardiovascular Health: Evidence, Mechanisms, and Policy Imperatives.

Anatol J Cardiol

September 2025

Danish Cancer Institute, Danish Cancer Society, Denmark;Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.

Environmental noise, particularly from road, rail, and aircraft traffic, is now firmly recognized as a widespread risk factor for cardiovascular disease. About 1 in 3 Europeans is exposed to chronic noise exposure above the guideline thresholds recommended by the World Health Organization (WHO), thus contributing substantially to cardiovascular morbidity and mortality. Robust evidence from recent meta-analyses links transportation noise to ischemic heart disease, heart failure, stroke, hypertension, and type 2 diabetes mellitus.

View Article and Find Full Text PDF

Analysis of potential health impacts of road and rail traffic noise, using noise at residential locations in Austria as an example.

Wien Klin Wochenschr

September 2025

Center for Public Health, Department of Environmental Health, Medical University of Vienna, Kinderspitalgasse 1, 1090, Vienna, Austria.

Background: Environmental noise, particularly from road and railway traffic, has been identified as a significant public health concern. The World Health Organization (WHO) has highlighted the adverse effects of noise exposure on cardiovascular health, including ischemic heart disease (IHD). Despite the European Union's regulations on air pollution, there are no mandatory limits for environmental noise exposure, necessitating further investigation into its health impacts.

View Article and Find Full Text PDF

Transportation noise: its cardiovascular effects and their reversibility; a narrative review.

Blood Press

December 2025

1st Department of Cardiology, Interventional Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, Kraków, Poland.

Background: Transportation noise seems to be inherent in modern urban living. However, many studies indicate that it can unfavorably affect human health, especially by influencing the cardiovascular outcome. The large number of people exposed to noise in the European Union becomes relevant to public health.

View Article and Find Full Text PDF

Particle motion polarization of offshore fish vocalizations versus ambient and ship noise.

J Acoust Soc Am

September 2025

Centre National de la Recherche Scientifique, Centre de Recherche en Automatique de Nancy, Université de Lorraine, Nancy, F-54000, France.

Acoustic particle motion is the primary cue for fish hearing and a vector quantity that contains polarization information (including directionality) relevant to the directional hearing abilities of fishes. Polarization metrics, including ellipse orientation angle, ellipticity angle, and degree of polarization, have been recently applied to describe particle motion polarization in physical acoustical oceanography studies and have yet to be applied to in situ biological signals. This study harnessed data from a compact orthogonal hydrophone array deployed on the seafloor offshore of Florida (part of the Atlantic Deepwater Ecosystem Observatory Network) to investigate particle motion polarization properties of unidentified acoustic fish signals relative to ambient and ship noise.

View Article and Find Full Text PDF